scholarly journals Numerical Simulation on Convection and Thermal Radiation of Casson Fluid in an Enclosure with Entropy Generation

Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 229 ◽  
Author(s):  
A. K. Alzahrani ◽  
S. Sivasankaran ◽  
M. Bhuvaneswari

The goal of the current numerical simulation is to explore the impact of aspect ratio, thermal radiation, and entropy generation on buoyant induced convection in a rectangular box filled with Casson fluid. The vertical boundaries of the box are maintained with different constant thermal distribution. Thermal insulation is executed on horizontal boundaries. The solution is obtained by a finite volume-based iterative method. The results are explored over a range of radiation parameter, Casson fluid parameter, aspect ratio, and Grashof number. The impact of entropy generation is also examined in detail. Thermal stratification occurs for greater values of Casson liquid parameters in the presence of radiation. The kinetic energy grows on rising the values of Casson liquid and radiation parameters. The thermal energy transport declines on growing the values of radiation parameter and it enhances on rising the Casson fluid parameter.

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1471
Author(s):  
Sivasankaran Sivanandam ◽  
Ali J. Chamkha ◽  
Fouad O. M. Mallawi ◽  
Metib S. Alghamdi ◽  
Aisha M. Alqahtani

A numeric investigation is executed to understand the impact of moving-wall direction, thermal radiation, entropy generation and nanofluid volume fraction on combined convection and energy transfer of nanoliquids in a differential heated box. The top wall of the enclosed box is assumed to move either to the left or the right direction which affects the stream inside the box. The horizontal barriers are engaged to be adiabatic. The derived mathematical model is solved by the control volume technique. The results are presented graphically to know the impact of the dissimilar ways of moving wall, Richardson number, Bejan number, thermal radiation, cup mixing and average temperatures. It is concluded that the stream and the thermal distribution are intensely affected by the moving-wall direction. It is established that the thermal radiation enhances the convection energy transport inside the enclosure.


2020 ◽  
Vol 14 (2) ◽  
pp. 150-167
Author(s):  
Obalalu Adebowale Martins ◽  
Kazeem Issa ◽  
Abdulrazaq Abdulraheem ◽  
Ajala Olusegun Adebayo ◽  
Adeosun Adeshina Taofeeq ◽  
...  

In this work, the influence of entropy generation analysis for an electrically conducting Casson fluid flow with convective boundary conditions has been numerically studied. The governing equations are analyzed numerically using weighted residual methods. Subsequently, the residuals were minimized using two different approaches of weighted residual method namely collocation weighted residual method (CWRM) and Galerkin weighted residual method (GWRM) and computed numerically using MATHEMATICAL software. The impacts of governing parameters on Casson flow velocity, temperature profile, local skin friction, and Nusselt number were analysed. The obtained solutions were used to determine the heat transfer irreversibility and bejan number of the model. The results of the computation show that the effect of thermophysical properties such as thermal radiation parameter, suction/injection parameter, magnetic field parameter, radiation parameter, and Eckert number has a significant influence on Skin friction coefficient (Cf) and local Nusselt number (Nu) when compared to the Newtonian fluid. The findings from this study are relevant to advances in viscoelasticity and enhanced oil recovery.


Author(s):  
BJ Gireesha ◽  
CT Srinivasa ◽  
NS Shashikumar ◽  
Madhu Macha ◽  
JK Singh ◽  
...  

The combined effects of the magnetic field, suction/injection, and convective boundary condition on heat transfer and entropy generation in an electrically conducting Casson fluid flow through an inclined porous microchannel are scrutinized. The temperature-dependent heat source is also accounted. Numerical simulation for the modelled problem is presented via Runge–Kutta–Felhberg-based shooting technique. Special attention is given to analyze the impact of involved parameters on the profiles of velocity [Formula: see text], temperature [Formula: see text], entropy generation [Formula: see text], and Bejan number [Formula: see text]. It is established that entropy generation rate decreases at the walls with an increase in Hartmann number [Formula: see text], while it increases at the center region of the microchannel.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 495 ◽  
Author(s):  
Nargis Khan ◽  
Iram Riaz ◽  
Muhammad Sadiq Hashmi ◽  
Saed A. Musmar ◽  
Sami Ullah Khan ◽  
...  

The appropriate utilization of entropy generation may provoke dipping losses in the available energy of nanofluid flow. The effects of chemical entropy generation in axisymmetric flow of Casson nanofluid between radiative stretching disks in the presence of thermal radiation, chemical reaction, and heat absorption/generation features have been mathematically modeled and simulated via interaction of slip boundary conditions. Shooting method has been employed to numerically solve dimensionless form of the governing equations, including expressions referring to entropy generation. The impacts of the physical parameters on fluid velocity components, temperature and concentration profiles, and entropy generation number are presented. Simulation results revealed that axial component of velocity decreases with variation of Casson fluid parameter. A declining variation in Bejan number was noticed with increment of Casson fluid constant. Moreover, a progressive variation in Bejan number resulted due to the impact of Prandtl number and stretching ratio constant.


Author(s):  
Bandaru Mallikarjuna ◽  
Srinivas Jangili ◽  
G. Gopi Krishna ◽  
O. A. Beg ◽  
Ali Kadir

Abstract Electromagnetic high-temperature therapy is popular in medical engineering treatments for various diseases include tissue damage ablation repair, hyperthermia and oncological illness diagnosis. The simulation of transport phenomena in such applications requires multi-physical models featuring magnetohydrodynamics, biorheology, heat transfer and deformable porous media. Motivated by investigating the fluid dynamics and thermodynamic optimization of such processes, in the present article a mathematical model is developed to study the combined influence of thermal buoyancy, magnetic field and thermal radiation on the fluid and heat characteristics in electrically-conducting viscoelastic biofluid flow through a vertical deformable porous medium. Jefferys elastic-viscous model is deployed to simulate non-Newtonian characteristics of the biofluid. It is assumed that heat is generated within the fluid by both viscous and Darcy (porous matrix) dissipations. The boundary value problem is normalized with appropriate transformations. The non-dimensional biofluid velocity, solid displacement and temperature equations with appropriate boundary conditions are solved computationally using a spectral method. Verification of accuracy is conducted via monitoring residuals of the solutions and Validated with shooting technique is included. The effects of Jeffrey viscoelastic parameter, viscous drag parameter, magnetic field parameter, radiation parameter and buoyancy parameter on flow velocity, solid displacement, temperature and entropy generation are depicted graphically and interpreted at length. Increasing magnetic field and drag parameters are found to reduce the field velocity, solid displacement, temperature and entropy production. Higher magnitudes of thermal radiation parameter retard the flow and decrease Nusselt number whereas they elevate solid displacement.


2018 ◽  
Vol 28 (12) ◽  
pp. 2916-2941 ◽  
Author(s):  
Taher Armaghani ◽  
A. Kasaeipoor ◽  
Mohsen Izadi ◽  
Ioan Pop

Purpose The purpose of this paper is to numerically study MHD natural convection and entropy generation of Al2O3-water alumina nanofluid inside of T-shaped baffled cavity which is subjected to a magnetic field. Design/methodology/approach Effect of various geometrical, fluid and flow factors such as aspect ratio of enclosure and baffle length, Rayleigh and Hartmann number of nanofluid have been considered in detail. The hydrodynamics and thermal indexes of nanofluid have been described using streamlines, isotherms and isentropic lines. Findings It is found that by enhancing Hartmann number, symmetrical streamlines gradually lose symmetry and their values decline. It is found that by enhancing Hartmann number, symmetrical streamlines gradually lose symmetry and their values decline. The interesting finding is an increase in the impact of Hartmann number on heat transfer indexes with augmenting Rayleigh number. However, with augmenting Rayleigh number and, thus, strengthening the buoyant forces, the efficacy of Hartmann number one, an index indicating the simultaneous impact of natural heat transfer to entropy generation increases. It is clearly seen that the efficacy of nanofluid on increased Nusselt number enhances with increasing aspect ratio of the enclosure. Based on the results, the Nusselt number generally enhances with the larger baffle length in the enclosure. Finally, with larger Hartmann number and lesser Nusselt one, entropy production is reduced. Originality/value The authors believe that all the results, both numerical and asymptotic, are original and have not been published elsewhere.


2018 ◽  
Vol 8 (12) ◽  
pp. 2588 ◽  
Author(s):  
Sayer Alharbi ◽  
Abdullah Dawar ◽  
Zahir Shah ◽  
Waris Khan ◽  
Muhammad Idrees ◽  
...  

In this article, we have briefly examined the entropy generation in magnetohydrodynamic (MHD) Eyring–Powell fluid over an unsteady oscillating porous stretching sheet. The impact of thermal radiation and heat source/sink are taken in this investigation. The impact of embedded parameters on velocity function, temperature function, entropy generation rate, and Bejan number are deliberated through graphs, and discussed as well. By studying the entropy generation in magnetohydrodynamic Eyring–Powell fluid over an unsteady oscillating porous stretching sheet, the entropy generation rate is reduced with escalation in porosity, thermal radiation, and magnetic parameters, while increased with the escalation in Reynolds number. Also, the Bejan number is increased with the escalation in porosity and magnetic parameter, while increased with the escalation in thermal radiation parameter. The impact of skin fraction coefficient and local Nusselt number are discussed through tables. The partial differential equations are converted to ordinary differential equation with the help of similarity variables. The homotopy analysis method (HAM) is used for the solution of the problem. The results of this investigation agree, satisfactorily, with past studies.


2018 ◽  
Vol 16 ◽  
pp. 120-139 ◽  
Author(s):  
N.S. Shashikumar ◽  
B.C. Prasannakumara ◽  
Bijjanal Jayanna Gireesha ◽  
Oluwole Daniel Makinde

The heat transfer and entropy generation in a MHD flow of Casson fluid through a porous microchannel with thermal radiation were investigated numerically. Combined effects of suction/injection, hydrodynamic slip, magnetic field and convective boundary condition on the heat transfer and entropy generation are studied. The dimensionless equations are solved numerically by using fourth-fifth-order Runge–Kutta integration method along with shooting technique. Moreover, influences of pertinent parameters on velocity, temperature and entropy generation were discussed in detail and illustrated graphically. Based on numerical results, we can see that, entropy generation rate increases with an increase in radiation parameter and Biot number. As Hartmann number increases, the entropy generation decreases at the both cooled and heated plates and increases at the centerline region of the microchannel.


Sign in / Sign up

Export Citation Format

Share Document