scholarly journals A Graph-Based Author Name Disambiguation Method and Analysis via Information Theory

Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 416
Author(s):  
Yingying Ma ◽  
Youlong Wu ◽  
Chengqiang Lu

Name ambiguity, due to the fact that many people share an identical name, often deteriorates the performance of information integration, document retrieval and web search. In academic data analysis, author name ambiguity usually decreases the analysis performance. To solve this problem, an author name disambiguation task is designed to divide documents related to an author name reference into several parts and each part is associated with a real-life person. Existing methods usually use either attributes of documents or relationships between documents and co-authors. However, methods of feature extraction using attributes cause inflexibility of models while solutions based on relationship graph network ignore the information contained in the features. In this paper, we propose a novel name disambiguation model based on representation learning which incorporates attributes and relationships. Experiments on a public real dataset demonstrate the effectiveness of our model and experimental results demonstrate that our solution is superior to several state-of-the-art graph-based methods. We also increase the interpretability of our method through information theory and show that the analysis could be helpful for model selection and training progress.

2020 ◽  
Vol 34 (01) ◽  
pp. 238-245
Author(s):  
Haiwen Wang ◽  
Ruijie Wan ◽  
Chuan Wen ◽  
Shuhao Li ◽  
Yuting Jia ◽  
...  

Author name ambiguity causes inadequacy and inconvenience in academic information retrieval, which raises the necessity of author name disambiguation (AND). Existing AND methods can be divided into two categories: the models focusing on content information to distinguish whether two papers are written by the same author, the models focusing on relation information to represent information as edges on the network and to quantify the similarity among papers. However, the former requires adequate labeled samples and informative negative samples, and are also ineffective in measuring the high-order connections among papers, while the latter needs complicated feature engineering or supervision to construct the network. We propose a novel generative adversarial framework to grow the two categories of models together: (i) the discriminative module distinguishes whether two papers are from the same author, and (ii) the generative module selects possibly homogeneous papers directly from the heterogeneous information network, which eliminates the complicated feature engineering. In such a way, the discriminative module guides the generative module to select homogeneous papers, and the generative module generates high-quality negative samples to train the discriminative module to make it aware of high-order connections among papers. Furthermore, a self-training strategy for the discriminative module and a random walk based generating algorithm are designed to make the training stable and efficient. Extensive experiments on two real-world AND benchmarks demonstrate that our model provides significant performance improvement over the state-of-the-art methods.


2018 ◽  
Vol 12 (2) ◽  
pp. 91-100 ◽  
Author(s):  
Hang Jun Si ◽  
Weiqin Tong ◽  
Samina Kausar

The name ambiguity problem affects the accuracy of the web search, document retrieval, and information fusion. A lot of work has been done to solve the name disambiguation problem for publication or paper, but we propose a model to solve this problem for the National Natural Science Foundation of China fund. In this paper, we propose a probabilistic Markov random fields framework to solve the problem of the National Natural Science Foundation of China fund name disambiguation. We define an objective function and use parameters learning algorithm to get the suitable parameters. Experimental results indicate that our approach significantly outperforms other different traditional clustering methods.


2021 ◽  
Vol 55 (1) ◽  
pp. 1-2
Author(s):  
Bhaskar Mitra

Neural networks with deep architectures have demonstrated significant performance improvements in computer vision, speech recognition, and natural language processing. The challenges in information retrieval (IR), however, are different from these other application areas. A common form of IR involves ranking of documents---or short passages---in response to keyword-based queries. Effective IR systems must deal with query-document vocabulary mismatch problem, by modeling relationships between different query and document terms and how they indicate relevance. Models should also consider lexical matches when the query contains rare terms---such as a person's name or a product model number---not seen during training, and to avoid retrieving semantically related but irrelevant results. In many real-life IR tasks, the retrieval involves extremely large collections---such as the document index of a commercial Web search engine---containing billions of documents. Efficient IR methods should take advantage of specialized IR data structures, such as inverted index, to efficiently retrieve from large collections. Given an information need, the IR system also mediates how much exposure an information artifact receives by deciding whether it should be displayed, and where it should be positioned, among other results. Exposure-aware IR systems may optimize for additional objectives, besides relevance, such as parity of exposure for retrieved items and content publishers. In this thesis, we present novel neural architectures and methods motivated by the specific needs and challenges of IR tasks. We ground our contributions with a detailed survey of the growing body of neural IR literature [Mitra and Craswell, 2018]. Our key contribution towards improving the effectiveness of deep ranking models is developing the Duet principle [Mitra et al., 2017] which emphasizes the importance of incorporating evidence based on both patterns of exact term matches and similarities between learned latent representations of query and document. To efficiently retrieve from large collections, we develop a framework to incorporate query term independence [Mitra et al., 2019] into any arbitrary deep model that enables large-scale precomputation and the use of inverted index for fast retrieval. In the context of stochastic ranking, we further develop optimization strategies for exposure-based objectives [Diaz et al., 2020]. Finally, this dissertation also summarizes our contributions towards benchmarking neural IR models in the presence of large training datasets [Craswell et al., 2019] and explores the application of neural methods to other IR tasks, such as query auto-completion.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4486
Author(s):  
Niall O’Mahony ◽  
Sean Campbell ◽  
Lenka Krpalkova ◽  
Anderson Carvalho ◽  
Joseph Walsh ◽  
...  

Fine-grained change detection in sensor data is very challenging for artificial intelligence though it is critically important in practice. It is the process of identifying differences in the state of an object or phenomenon where the differences are class-specific and are difficult to generalise. As a result, many recent technologies that leverage big data and deep learning struggle with this task. This review focuses on the state-of-the-art methods, applications, and challenges of representation learning for fine-grained change detection. Our research focuses on methods of harnessing the latent metric space of representation learning techniques as an interim output for hybrid human-machine intelligence. We review methods for transforming and projecting embedding space such that significant changes can be communicated more effectively and a more comprehensive interpretation of underlying relationships in sensor data is facilitated. We conduct this research in our work towards developing a method for aligning the axes of latent embedding space with meaningful real-world metrics so that the reasoning behind the detection of change in relation to past observations may be revealed and adjusted. This is an important topic in many fields concerned with producing more meaningful and explainable outputs from deep learning and also for providing means for knowledge injection and model calibration in order to maintain user confidence.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 870
Author(s):  
Robby Neven ◽  
Toon Goedemé

Automating sheet steel visual inspection can improve quality and reduce costs during its production. While many manufacturers still rely on manual or traditional inspection methods, deep learning-based approaches have proven their efficiency. In this paper, we go beyond the state-of-the-art in this domain by proposing a multi-task model that performs both pixel-based defect segmentation and severity estimation of the defects in one two-branch network. Additionally, we show how incorporation of the production process parameters improves the model’s performance. After manually constructing a real-life industrial dataset, we first implemented and trained two single-task models performing the defect segmentation and severity estimation tasks separately. Next, we compared this to a multi-task model that simultaneously performs the two tasks at hand. By combining the tasks into one model, both segmentation tasks improved by 2.5% and 3% mIoU, respectively. In the next step, we extended the multi-task model using sensor fusion with process parameters. We demonstrate that the incorporation of the process parameters resulted in a further mIoU increase of 6.8% and 2.9% for the defect segmentation and severity estimation tasks, respectively.


2021 ◽  
Vol 7 (3) ◽  
pp. 49
Author(s):  
Daniel Carlos Guimarães Pedronette ◽  
Lucas Pascotti Valem ◽  
Longin Jan Latecki

Visual features and representation learning strategies experienced huge advances in the previous decade, mainly supported by deep learning approaches. However, retrieval tasks are still performed mainly based on traditional pairwise dissimilarity measures, while the learned representations lie on high dimensional manifolds. With the aim of going beyond pairwise analysis, post-processing methods have been proposed to replace pairwise measures by globally defined measures, capable of analyzing collections in terms of the underlying data manifold. The most representative approaches are diffusion and ranked-based methods. While the diffusion approaches can be computationally expensive, the rank-based methods lack theoretical background. In this paper, we propose an efficient Rank-based Diffusion Process which combines both approaches and avoids the drawbacks of each one. The obtained method is capable of efficiently approximating a diffusion process by exploiting rank-based information, while assuring its convergence. The algorithm exhibits very low asymptotic complexity and can be computed regionally, being suitable to outside of dataset queries. An experimental evaluation conducted for image retrieval and person re-ID tasks on diverse datasets demonstrates the effectiveness of the proposed approach with results comparable to the state-of-the-art.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4666
Author(s):  
Zhiqiang Pan ◽  
Honghui Chen

Collaborative filtering (CF) aims to make recommendations for users by detecting user’s preference from the historical user–item interactions. Existing graph neural networks (GNN) based methods achieve satisfactory performance by exploiting the high-order connectivity between users and items, however they suffer from the poor training efficiency problem and easily introduce bias for information propagation. Moreover, the widely applied Bayesian personalized ranking (BPR) loss is insufficient to provide supervision signals for training due to the extremely sparse observed interactions. To deal with the above issues, we propose the Efficient Graph Collaborative Filtering (EGCF) method. Specifically, EGCF adopts merely one-layer graph convolution to model the collaborative signal for users and items from the first-order neighbors in the user–item interactions. Moreover, we introduce contrastive learning to enhance the representation learning of users and items by deriving the self-supervisions, which is jointly trained with the supervised learning. Extensive experiments are conducted on two benchmark datasets, i.e., Yelp2018 and Amazon-book, and the experimental results demonstrate that EGCF can achieve the state-of-the-art performance in terms of Recall and normalized discounted cumulative gain (NDCG), especially on ranking the target items at right positions. In addition, EGCF shows obvious advantages in the training efficiency compared with the competitive baselines, making it practicable for potential applications.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Bo Liu ◽  
Haowen Zhong ◽  
Yanshan Xiao

Multi-view classification aims at designing a multi-view learning strategy to train a classifier from multi-view data, which are easily collected in practice. Most of the existing works focus on multi-view classification by assuming the multi-view data are collected with precise information. However, we always collect the uncertain multi-view data due to the collection process is corrupted with noise in real-life application. In this case, this article proposes a novel approach, called uncertain multi-view learning with support vector machine (UMV-SVM) to cope with the problem of multi-view learning with uncertain data. The method first enforces the agreement among all the views to seek complementary information of multi-view data and takes the uncertainty of the multi-view data into consideration by modeling reachability area of the noise. Then it proposes an iterative framework to solve the proposed UMV-SVM model such that we can obtain the multi-view classifier for prediction. Extensive experiments on real-life datasets have shown that the proposed UMV-SVM can achieve a better performance for uncertain multi-view classification in comparison to the state-of-the-art multi-view classification methods.


Sign in / Sign up

Export Citation Format

Share Document