scholarly journals Electrodeposition Fabrication of Chalcogenide Thin Films for Photovoltaic Applications

Electrochem ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 286-321
Author(s):  
Sudipto Saha ◽  
Michael Johnson ◽  
Fadhilah Altayaran ◽  
Youli Wang ◽  
Danling Wang ◽  
...  

Electrodeposition, which features low cost, easy scale-up, good control in the composition and great flexible substrate compatibility, is a favorable technique for producing thin films. This paper reviews the use of the electrodeposition technique for the fabrication of several representative chalcogenides that have been widely used in photovoltaic devices. The review focuses on narrating the mechanisms for the formation of films and the key factors that affect the morphology, composition, crystal structure and electric and photovoltaic properties of the films. The review ends with a remark section addressing some of the key issues in the electrodeposition method towards creating high quality chalcogenide films.

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1132 ◽  
Author(s):  
Anara Molkenova ◽  
Laura Khamkhash ◽  
Ainur Zhussupbekova ◽  
Kuanysh Zhussupbekov ◽  
Sagyntay Sarsenov ◽  
...  

Transparent titanium oxide thin films attract enormous attention from the scientific community because of their prominent properties, such as low-cost, chemical stability, and optical transparency in the visible region. In this study, we developed an easy and scalable solution-based process for the deposition of transparent TiOx thin films on glass substrates. We showed that the proposed method is also suitable for the fabrication of metal-doped TiOx thin films. As proof-of-the-concept, europium Eu(III) ions were introduced into TiOx film. A photoluminescence (PL) study revealed that Eu-doped TiOx thin films showed strong red luminescence associated with 5D0→7Fj relaxation transitions in Eu (III). We found that prepared TiOx thin films significantly reduce the transmittance of destructive UV radiation; a feature that can be useful for the protection of photovoltaic devices. In addition, transparent and luminescent TiOx thin films can be utilized for potential security labeling.


Author(s):  
Ayan Mukherjee ◽  
Partha Mitra

In recent years, ternary cadmium zinc sulfide (CdZnS) alloy compounds have been paid much attention in the fields of opto-electronics, particularly in photovoltaic devices. CdZnS thin films can be prepared by different techniques among which chemical methods have more advantages. Among different chemical method, Chemical Bath Deposition (CBD) is simple, low cost and widely applicable in industrial applications. In this chapter, we have discussed different methods of preparation of CdZnS thin film and their obtained properties. Also, the films are characterized by XRD, TEM, FESEM, EDAX, UV-Vis spectroscopy, etc. The properties of CdZnS gives insight of the properties of ternary thin film semiconductor and it will help to design semiconductor with tuneable properties for future applications in optoelectronic sector.


2015 ◽  
Vol 2 (2) ◽  
pp. 221-227 ◽  
Author(s):  
Peter Kovacik ◽  
Gabriella del Hierro ◽  
William Livernois ◽  
Karen K. Gleason

We demonstrate large-area conductive polymer films using oxidative chemical vapor deposition and apply them to low-cost and durable conductive textiles.


2019 ◽  
Vol 236 ◽  
pp. 428-431 ◽  
Author(s):  
Vipin Shrotriya ◽  
M. Burhanuz Zaman ◽  
Rajaram Poolla

2017 ◽  
Vol 67 ◽  
pp. 20-27 ◽  
Author(s):  
Baligh Touati ◽  
Abdelaziz Gassoumi ◽  
Cathy Guasch ◽  
Najoua Kamoun Turki

2021 ◽  
Vol 4 (1) ◽  
pp. 9
Author(s):  
Maykel Courel ◽  
Miriam M. Nicolás ◽  
Osvaldo Vigil-Galán

The acquisition of new materials for the manufacturing of high efficiency and low-cost photovoltaic devices has currently become a challenge. Thin films of CuInGaSe and CdTe have been widely used in solar cell of second generation, achieving efficiencies about 20 %; however, the low abundance of In and Te as well as the toxicity of Cd is the primary obstacles to their industrial production. Compounds such as Cu2ZnSnS4, Cu2ZnSnSe4 and Cu2ZnSn(SSe)4 have emerged as an important and less costly alternative for efficient energy conversion in the future. In addition, these compounds have the required characteristics to be used as an absorber material in solar cells (band-gap close to 1.4 eV, an absorption coefficient greater than 104 cm-1 and a p-type conductivity). In this work, we present a study of the structural, compositional, morphological and optical properties of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique as well as their dependence on temperature.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 911
Author(s):  
Aleksandr S. Baburin ◽  
Anton I. Ivanov ◽  
Evgeniy S. Lotkov ◽  
Olga S. Sorokina ◽  
Irina A. Boginskaya ◽  
...  

Silver and gold are the most commonly used materials in optics and plasmonics. Silver has the lowest optical losses in the visible and near-infrared wavelength range, but it faces a serious problem—degradation over time. It has been repeatedly reported that the optical properties of silver thin films rapidly degrade when exposed to the atmosphere. This phenomenon was described by various mechanisms: rapid silver oxidation, sorption of sulfur or oxygen, formation of silver compounds with chlorine, sulfur, and oxygen. In this work, we systematically studied single-crystalline silver films from 25 to 70 nm thicknesses for almost two years. The surface morphology, crystalline structure and optical characteristics of the silver films were measured using spectroscopic ellipsometry, ultra-high-resolution scanning electron microscopy, and stylus profilometry under standard laboratory conditions. After 19 months, bulk structures appeared on the surface of thin films. These structures are associated with relaxation of internal stresses combined with dewetting. Single-crystalline silver films deposited using the single-crystalline continuous ultra-smooth, low-loss, low-cost (SCULL) technology with a thickness of 35–50 nm demonstrated the best stability in terms of degradation. We have shown that the number of defects (grain boundaries and joints of terraces) is one of the key factors that influence the degradation intensity of silver films.


Author(s):  
J.P.S. Hanjra

Tin mono selenide (SnSe) with an energy gap of about 1 eV is a potential material for photovoltaic applications. Various authors have studied the structure, electronic and photoelectronic properties of thin films of SnSe grown by various deposition techniques. However, for practical photovoltaic junctions the electrical properties of SnSe films need improvement. We have carried out investigations into the properties of flash evaporated SnSe films. In this paper we report our results on the structure, which plays a dominant role on the electrical properties of thin films by TEM, SEM, and electron diffraction (ED).Thin films of SnSe were deposited by flash evaporation of SnSe fine powder prepared from high purity Sn and Se, onto glass, mica and KCl substrates in a vacuum of 2Ø micro Torr. A 15% HF + 2Ø% HNO3 solution was used to detach SnSe film from the glass and mica substrates whereas the film deposited on KCl substrate was floated over an ethanol water mixture by dissolution of KCl. The floating films were picked up on the grids for their EM analysis.


Sign in / Sign up

Export Citation Format

Share Document