scholarly journals Epitaxial Silver Films Morphology and Optical Properties Evolution over Two Years

Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 911
Author(s):  
Aleksandr S. Baburin ◽  
Anton I. Ivanov ◽  
Evgeniy S. Lotkov ◽  
Olga S. Sorokina ◽  
Irina A. Boginskaya ◽  
...  

Silver and gold are the most commonly used materials in optics and plasmonics. Silver has the lowest optical losses in the visible and near-infrared wavelength range, but it faces a serious problem—degradation over time. It has been repeatedly reported that the optical properties of silver thin films rapidly degrade when exposed to the atmosphere. This phenomenon was described by various mechanisms: rapid silver oxidation, sorption of sulfur or oxygen, formation of silver compounds with chlorine, sulfur, and oxygen. In this work, we systematically studied single-crystalline silver films from 25 to 70 nm thicknesses for almost two years. The surface morphology, crystalline structure and optical characteristics of the silver films were measured using spectroscopic ellipsometry, ultra-high-resolution scanning electron microscopy, and stylus profilometry under standard laboratory conditions. After 19 months, bulk structures appeared on the surface of thin films. These structures are associated with relaxation of internal stresses combined with dewetting. Single-crystalline silver films deposited using the single-crystalline continuous ultra-smooth, low-loss, low-cost (SCULL) technology with a thickness of 35–50 nm demonstrated the best stability in terms of degradation. We have shown that the number of defects (grain boundaries and joints of terraces) is one of the key factors that influence the degradation intensity of silver films.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Animesh Pandey ◽  
Reena Yadav ◽  
Mandeep Kaur ◽  
Preetam Singh ◽  
Anurag Gupta ◽  
...  

AbstractTopological insulators (TIs) possess exciting nonlinear optical properties due to presence of metallic surface states with the Dirac fermions and are predicted as a promising material for broadspectral phodotection ranging from UV (ultraviolet) to deep IR (infrared) or terahertz range. The recent experimental reports demonstrating nonlinear optical properties are mostly carried out on non-flexible substrates and there is a huge demand for the fabrication of high performing flexible optoelectronic devices using new exotic materials due to their potential applications in wearable devices, communications, sensors, imaging etc. Here first time we integrate the thin films of TIs (Bi2Te3) with the flexible PET (polyethylene terephthalate) substrate and report the strong light absorption properties in these devices. Owing to small band gap material, evolving bulk and gapless surface state conduction, we observe high responsivity and detectivity at NIR (near infrared) wavelengths (39 A/W, 6.1 × 108 Jones for 1064 nm and 58 A/W, 6.1 × 108 Jones for 1550 nm). TIs based flexible devices show that photocurrent is linearly dependent on the incident laser power and applied bias voltage. Devices also show very fast response and decay times. Thus we believe that the superior optoelectronic properties reported here pave the way for making TIs based flexible optoelectronic devices.


Coatings ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 248 ◽  
Author(s):  
Benjamin Schumm ◽  
Thomas Abendroth ◽  
Saleh A. Alajlan ◽  
Ahmed M. Almogbel ◽  
Holger Althues ◽  
...  

Multilayered nanocoatings allow outstanding properties with broad potential for glazing applications. Here, we report on the development of a multilayer nanocoating for zinc oxide (ZnO) and antimony doped tin oxide (ATO). The combination of ZnO and ATO thin films with their promising optical properties is a cost-efficient alternative for the production of energy-efficient glazing. It is an effective modification of the building envelope to reduce current high domestic demand of electrical power for air conditioning, especially in hot climates like Saudi Arabia. In this paper, we report the development of a nanocoating based on the combination of ZnO and ATO. Principle material and film investigations were carried out on lab-scale by dip coating with chemical solution deposition (CSD), while with regard to production processes, chemical vapor deposition (CVD) processes were evaluated in a second stage of the film development. It was found that with both processes, high-quality thin films and multilayer coatings with outstanding optical properties can be prepared. While keeping the optical transmission in the visible range at around 80%, only 10% of the NIR (near infrared) and below 1% of UV (ultraviolet) light passes these coatings. However, in contrast to CSD, the CVD process allows a free combination of the multilayer film sequence, which is of high relevance for production processes. Furthermore, it can be potentially integrated in float glass production lines.


2015 ◽  
Vol 39 (1) ◽  
pp. 25-30 ◽  
Author(s):  
A Hasnat Rubel ◽  
J Podder

Aluminium doped cadmium sulphide thin films were prepared on glass substrate using aqueous solution of cadmium sulphide and thiourea salts by spray pyrolysis deposition (SPD) technique. Its optical properties were analyzed as a function of doping concentration. The direct energy band-gap of Al-doped CdS films was estimated in the range of 2.25 to 2.48 eV. The optical spectra of Cd1-xAlxS ternary system exhibit high absorption near visible region and transmission throughout the near-infrared region (600 - 1200 nm). Thus so obtained hetero-junction films are suitable for fabrication of photo detectors, solar cells and other optoelectronics devices.Journal of Bangladesh Academy of Sciences, Vol. 39, No. 1, 25-30, 2015


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ryosuke Watanabe ◽  
Yohei Eguchi ◽  
Takuya Yamada ◽  
Yoji Saito

Antireflection coating (ARC) prepared by a wet process is beneficial for low cost fabrication of photovoltaic cells. In this study, we investigated optical properties and morphologies of spin-coated TiO2ARCs on alkaline textured single-crystalline silicon wafers. Reflectance spectra of the spin-coated ARCs on alkaline textured silicon wafers exhibit no interferences and low reflectance values in the entire visible range. We modeled the structures of the spin-coated films for ray tracing numerical calculation and compared numerically calculated reflectance spectra with the experimental results. This is the first report to clarify the novel optical properties experimentally and theoretically. Optical properties of the spin-coated ARCs without interference are due to the fractional nonuniformity of the thickness of the spin-coated ARCs that cancels out the interference of the incident light.


Electrochem ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 286-321
Author(s):  
Sudipto Saha ◽  
Michael Johnson ◽  
Fadhilah Altayaran ◽  
Youli Wang ◽  
Danling Wang ◽  
...  

Electrodeposition, which features low cost, easy scale-up, good control in the composition and great flexible substrate compatibility, is a favorable technique for producing thin films. This paper reviews the use of the electrodeposition technique for the fabrication of several representative chalcogenides that have been widely used in photovoltaic devices. The review focuses on narrating the mechanisms for the formation of films and the key factors that affect the morphology, composition, crystal structure and electric and photovoltaic properties of the films. The review ends with a remark section addressing some of the key issues in the electrodeposition method towards creating high quality chalcogenide films.


2015 ◽  
Vol 1109 ◽  
pp. 593-597
Author(s):  
M.F. Nasir ◽  
Mohd Hannas ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

This project has been focused on the electrical and optical properties on the effect of Indium doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different In dopant concentrations at 1 at%, 1.5 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 oC. In doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and UV-Vis-NIR spectrophotometer for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% In doping concentration which is 8.27× 103Ωcm-1The absorption coefficient spectrum obtained from UV-Vis-NIR spectrophotometer measurement shows all films exhibit very low absorption in the visible (400-800nm) and near infrared (NIR) (>800nm) range but exhibit high absorption in the UV range.


ACS Photonics ◽  
2017 ◽  
Vol 4 (5) ◽  
pp. 1083-1091 ◽  
Author(s):  
Harsha Reddy ◽  
Urcan Guler ◽  
Krishnakali Chaudhuri ◽  
Aveek Dutta ◽  
Alexander V. Kildishev ◽  
...  

2017 ◽  
Vol 7 (7) ◽  
pp. 2218 ◽  
Author(s):  
Yuki Iimori ◽  
Tsunenobu Onodera ◽  
Hitoshi Kasai ◽  
Masaya Mitsuishi ◽  
Tokuji Miyashita ◽  
...  

2021 ◽  
Vol 18 (20) ◽  
pp. 16
Author(s):  
John Damisa ◽  
Joseph Onyeka Emegha

The effects of deposition cycles on the structural and optical properties of lead tin sulphide (PbSnS) thin films have been described. Successive ionic layer adsorption and reaction (SILAR) method was used to deposit the ternary material on soda-lime substrates. In the present work, the PbSnS films were grown using lead nitrate, tin chloride dehydrate and thioacetamide solutions as sources of Pb, Sn and S, respectively. XRD measurements revealed that the deposited films were polycrystalline in nature with strong adherent to the substrates. The transmittance was found to be high in the near infrared regions of the electromagnetic radiation and, also increased with deposition cycles. The band gap energy was found to vary from 1.70 to 1.75 eV for 10 and 35 deposition cycles. The study indicates that SILAR is an excellent method in depositing good quality films for device applications. HIGHLIGHTS SILAR is an excellent technique for depositing thin films of lead tin sulphide (PbSnS) Deposition cycles influences the XRD and optical properties of PbSnS thin films PbSnS thin films are useful for solar cell fabrications The band gaps of the PbSnS varies from 1.70 to 1.75 eV with deposition cycles


Sign in / Sign up

Export Citation Format

Share Document