scholarly journals A Study on the Effect of Bond Wires Lift-Off on IGBT Thermal Resistance Measurement

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 194
Author(s):  
Dan Luo ◽  
Minyou Chen ◽  
Wei Lai ◽  
Hongjian Xia ◽  
Xueni Ding ◽  
...  

Bond wire lift-off will cause an increase of remaining wires’ power dissipation, which usually is ignored for healthy modules. However, only partial wires’ power dissipation transfers through thermal path from junction to case, which will lead to overestimate the whole power dissipation from collector to emitter pole and underestimate the calculated thermal resistance using the proportion of temperature difference to power dissipation. A FEM model is established to show the change of heat flow after bond wires were removed, the temperature of bond wires increases, and the measured thermal resistance decrease after bond wires lift-off. It is validated by experimental results using open package Insulated Gate Bipolar Transistor (IGBT) modules under different current conditions. This conclusion might be helpful to indicate the bond wires lift-off and solder fatigue by comparing the change of measured thermal resistance. Using the Kelvin setup to measure thermal resistance will cause misjudgment of failure mode due to the ignoring of wires’ power dissipation. This paper proposed that the lift-off of bond wires will lead to underestimating the thermal resistance measurement, which will overestimate the lifetime of IGBT module and misjudge its state of health.

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1791 ◽  
Author(s):  
Qingyi Kong ◽  
Mingxing Du ◽  
Ziwei Ouyang ◽  
Kexin Wei ◽  
William Gerard Hurley

On-state voltage is an important thermal parameter for insulated gate bipolar transistor (IGBT) modules. It is employed widely to predict failure in IGBT module bond wires. However, due to restrictions in work environments and measurement methods, it is difficult to ensure the measurement accuracy for the on-state voltage under practical working conditions. To address this problem, an on-state voltage separation strategy is proposed for the IGBT modules with respect to the influence of collector current (Ic) and junction temperature (Tj). This method involves the separation of the on-state voltage into a dependent part and two independent parts during the IGBT module bond wire prediction. Based on the proposed separation strategy, the independent parts in the failure prediction can be removed, making it possible to directly monitor the voltage variations caused by bond wire failure. The experimental results demonstrate that the proposed diagnosis strategy can accurately predict the bond wire failure stage in an IGBT module under different conditions.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 851 ◽  
Author(s):  
Qingyi Kong ◽  
Mingxing Du ◽  
Ziwei Ouyang ◽  
Kexin Wei ◽  
William Hurley

The on-state voltage is an important electrical parameter of insulated gate bipolar transistor (IGBT) modules. Due to limits in instrumentation and methods, it is difficult to ensure accurate measurements of the on-state voltage in practical working conditions. Based on the physical structure and conduction mechanism of the IGBT module, this paper models the on-state voltage and gives a detailed method for extracting the on-state voltage. Experiments not only demonstrate the feasibility of the on-state voltage separation method but also suggest a method for measuring and extracting the model parameters. Furthermore, on-state voltage measurements and simulation results certified the accuracy of this method.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Shengqi Zhou ◽  
Luowei Zhou ◽  
Suncheng Liu ◽  
Pengju Sun ◽  
Quanming Luo ◽  
...  

Defect is one of the key factors in reducing the reliability of the insulated gate bipolar transistor (IGBT) module, so developing the diagnostic method for defects inside the IGBT module is an important measure to avoid catastrophic failure and improves the reliability of power electronic converters. For this reason, a novel diagnostic method based on the approximate entropy (ApEn) theory is presented in this paper, which can provide statistical diagnosis and allow the operator to replace defective IGBT modules timely. The proposed method is achieved by analyzing the cross ApEn of the gate voltages before and after the occurring of defects. Due to the local damage caused by aging, the intrinsic parasitic parameters of packaging materials or silicon chips inside the IGBT module such as parasitic inductances and capacitances may change over time, which will make remarkable variation in the gate voltage. That is to say the gate voltage is close coupled with the defects. Therefore, the variation is quantified and used as a precursor parameter to evaluate the health status of the IGBT module. Experimental results validate the correctness of the proposed method.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1066 ◽  
Author(s):  
Zhen Hu ◽  
Wenfeng Zhang ◽  
Juai Wu

Junction temperature is a key parameter that influences both the performance and the reliability of the insulated gate bipolar transistor (IGBT) module, while solder fatigue has a significant effect on the accuracy of junction temperature estimates using the electro-thermal model. In this paper, an improved electro-thermal model, which is independent of solder fatigue, is proposed to accurately estimate the junction temperature of IGBT module. Firstly, solder fatigue conditions are monitored in real time with the information of the case temperatures. Secondly, when solder fatigue is found, the update process of the electro-thermal model parameters is performed to match the model parameters with the fatigue device. With the above two-step process, the influence of solder fatigue on the accuracy of temperature estimates can be removed in good time. Experimental results are provided to validate the effectiveness of the proposed method.


2013 ◽  
Vol 53 (2) ◽  
pp. 282-287 ◽  
Author(s):  
Luowei Zhou ◽  
Shengqi Zhou ◽  
Mingwei Xu
Keyword(s):  

2018 ◽  
Vol 11 (2) ◽  
pp. 320-328 ◽  
Author(s):  
Yingzhou Peng ◽  
Luowei Zhou ◽  
Xiong Du ◽  
Pengju Sun ◽  
Kaihong Wang ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1449
Author(s):  
Chuankun Wang ◽  
Yigang He ◽  
Yunfeng Jiang ◽  
Lie Li

Due to the constant changes of the environment and load, the insulated-gate bipolar transistor (IGBT) module is subjected to a large amount of junction temperature (Tj) fluctuations, which often leads to damage to the bond wires. The monitoring parameters of IGBTs are often coupled with Tj, which increases the difficulty of monitoring IGBTs’ health status online. In this paper, based on the collector current (Ic) and collector-emitter on-state voltage (Vce_on) online monitoring circuit, an online monitoring method of IGBT bond wire aging against interference is proposed. First, the bond wire aging model is established, and the Vce_on is selected as the monitoring parameter. Secondly, taking a three-phase inverter circuit as an example, the Vce_on and Ic waveforms of the IGBT module are monitored in real time, and the process of online monitoring is introduced accordingly. Finally, the experimental results indicate that the method proposed in this paper can accurately identify the aging state of IGBT bond wires under different conditions.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kumar C Prasanna ◽  
Anand Rao

AbstractThe proposed study is improvised value-engineered modifications for the basic interleaved boost converter (IBC) by including relevant modifications in circuits, which is expected for a better performance in switching with reduction in losses. The newly modified IBC circuit with insulated gate bipolar transistor (IGBT) along with converter has been experimented by simulations and the results are tabulated to modified IBC with metal oxide silicon field effect transistors. Further experimental analysis and validations of the proposed simulation with hardware developed adopting model SKM195GB066D consisting of IGBTs is presented. This study further enhances and summarises the optimum utilisation and the performance of IBC with the proposed IGBT modules that synchronises power diode. Enhancing the simulation outcomes, the hardware is proposed and developed to be tested for a load up to 1.5 kW with the evaluation of key parameters such as efficiency of the converter.


Sign in / Sign up

Export Citation Format

Share Document