scholarly journals Development of energy-efficient IBC with IGBT module for photovoltaic applications

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kumar C Prasanna ◽  
Anand Rao

AbstractThe proposed study is improvised value-engineered modifications for the basic interleaved boost converter (IBC) by including relevant modifications in circuits, which is expected for a better performance in switching with reduction in losses. The newly modified IBC circuit with insulated gate bipolar transistor (IGBT) along with converter has been experimented by simulations and the results are tabulated to modified IBC with metal oxide silicon field effect transistors. Further experimental analysis and validations of the proposed simulation with hardware developed adopting model SKM195GB066D consisting of IGBTs is presented. This study further enhances and summarises the optimum utilisation and the performance of IBC with the proposed IGBT modules that synchronises power diode. Enhancing the simulation outcomes, the hardware is proposed and developed to be tested for a load up to 1.5 kW with the evaluation of key parameters such as efficiency of the converter.

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 223 ◽  
Author(s):  
Yannan Zhang ◽  
Ke Han ◽  
and Jiawei Li

Ultra-low power and high-performance logical devices have been the driving force for the continued scaling of complementary metal oxide semiconductor field effect transistors which greatly enable electronic devices such as smart phones to be energy-efficient and portable. In the pursuit of smaller and faster devices, researchers and scientists have worked out a number of ways to further lower the leaking current of MOSFETs (Metal oxide semiconductor field effect transistor). Nanowire structure is now regarded as a promising candidate of future generation of logical devices due to its ultra-low off-state leaking current compares to FinFET. However, the potential of nanowire in terms of off-state current has not been fully discovered. In this article, a novel Core–Insulator Gate-All-Around (CIGAA) nanowire has been proposed, investigated, and simulated comprehensively and systematically based on 3D numerical simulation. Comparisons are carried out between GAA and CIGAA. The new CIGAA structure exhibits low off-state current compares to that of GAA, making it a suitable candidate of future low-power and energy-efficient devices.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 851 ◽  
Author(s):  
Qingyi Kong ◽  
Mingxing Du ◽  
Ziwei Ouyang ◽  
Kexin Wei ◽  
William Hurley

The on-state voltage is an important electrical parameter of insulated gate bipolar transistor (IGBT) modules. Due to limits in instrumentation and methods, it is difficult to ensure accurate measurements of the on-state voltage in practical working conditions. Based on the physical structure and conduction mechanism of the IGBT module, this paper models the on-state voltage and gives a detailed method for extracting the on-state voltage. Experiments not only demonstrate the feasibility of the on-state voltage separation method but also suggest a method for measuring and extracting the model parameters. Furthermore, on-state voltage measurements and simulation results certified the accuracy of this method.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Shengqi Zhou ◽  
Luowei Zhou ◽  
Suncheng Liu ◽  
Pengju Sun ◽  
Quanming Luo ◽  
...  

Defect is one of the key factors in reducing the reliability of the insulated gate bipolar transistor (IGBT) module, so developing the diagnostic method for defects inside the IGBT module is an important measure to avoid catastrophic failure and improves the reliability of power electronic converters. For this reason, a novel diagnostic method based on the approximate entropy (ApEn) theory is presented in this paper, which can provide statistical diagnosis and allow the operator to replace defective IGBT modules timely. The proposed method is achieved by analyzing the cross ApEn of the gate voltages before and after the occurring of defects. Due to the local damage caused by aging, the intrinsic parasitic parameters of packaging materials or silicon chips inside the IGBT module such as parasitic inductances and capacitances may change over time, which will make remarkable variation in the gate voltage. That is to say the gate voltage is close coupled with the defects. Therefore, the variation is quantified and used as a precursor parameter to evaluate the health status of the IGBT module. Experimental results validate the correctness of the proposed method.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
Maksim A. Pavlenko ◽  
Yuri A. Tikhonov ◽  
Anna G. Razumnaya ◽  
Valerii M. Vinokur ◽  
Igor A. Lukyanchuk

It is well known that the ferroelectric layers in dielectric/ferroelectric/dielectric heterostructures harbor polarization domains resulting in the negative capacitance crucial for manufacturing energy-efficient field-effect transistors. However, the temperature behavior of the characteristic dielectric properties, and, hence, the corresponding behavior of the negative capacitance, are still poorly understood, restraining the technological progress thereof. Here we investigate the temperature-dependent properties of domain structures in the SrTiO3/PbTiO3/SrTiO3 heterostructures and demonstrate that the temperature–thickness phase diagram of the system includes the ferroelectric and paraelectric regions, which exhibit different responses to the applied electric field. Using phase-field modeling and analytical calculations we find the temperature dependence of the dielectric constant of ferroelectric layers and identify the regions of the phase diagram wherein the system demonstrates negative capacitance. We further discuss the optimal routes for implementing negative capacitance in energy-efficient ferroelectric field-effect transistors.


2021 ◽  
Author(s):  
Gyuho Myeong ◽  
Wongil Shin ◽  
Seungho Kim ◽  
Hongsik Lim ◽  
Boram Kim ◽  
...  

Abstract An increase in power consumption necessitates a low-power circuit technology to extend Moore’s law. Low-power transistors, such as tunnel field-effect transistors (TFETs)1-5, negative-capacitance field-effect transistors (NC-FETs)6, and Dirac-source field-effect transistors (DS-FETs)7-10, have been realised to break the thermionic limit of the subthreshold swing (SS). However, a low-power diode rectifier, which breaks the thermionic limit of an ideality factor (η) of 1 at room temperature, has not been proposed yet. In this study, we have realised a DS diode, which exhibits a steep-slope characteristic curve, by utilising the linear density of states (DOSs) of graphene7. For the developed DS diode, η < 1 for more than two decades of drain current with a minimum value of 0.8, and the rectifying ratio is large (> 105). The realisation of a DS diode paves the way for the development of low-power electronic circuits.


2019 ◽  
Vol 5 (5) ◽  
pp. 1800832 ◽  
Author(s):  
Meiyong Liao ◽  
Liwen Sang ◽  
Takehiro Shimaoka ◽  
Masataka Imura ◽  
Satoshi Koizumi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document