scholarly journals A Method to Monitor IGBT Module Bond Wire Failure Using On-State Voltage Separation Strategy

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1791 ◽  
Author(s):  
Qingyi Kong ◽  
Mingxing Du ◽  
Ziwei Ouyang ◽  
Kexin Wei ◽  
William Gerard Hurley

On-state voltage is an important thermal parameter for insulated gate bipolar transistor (IGBT) modules. It is employed widely to predict failure in IGBT module bond wires. However, due to restrictions in work environments and measurement methods, it is difficult to ensure the measurement accuracy for the on-state voltage under practical working conditions. To address this problem, an on-state voltage separation strategy is proposed for the IGBT modules with respect to the influence of collector current (Ic) and junction temperature (Tj). This method involves the separation of the on-state voltage into a dependent part and two independent parts during the IGBT module bond wire prediction. Based on the proposed separation strategy, the independent parts in the failure prediction can be removed, making it possible to directly monitor the voltage variations caused by bond wire failure. The experimental results demonstrate that the proposed diagnosis strategy can accurately predict the bond wire failure stage in an IGBT module under different conditions.

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1449
Author(s):  
Chuankun Wang ◽  
Yigang He ◽  
Yunfeng Jiang ◽  
Lie Li

Due to the constant changes of the environment and load, the insulated-gate bipolar transistor (IGBT) module is subjected to a large amount of junction temperature (Tj) fluctuations, which often leads to damage to the bond wires. The monitoring parameters of IGBTs are often coupled with Tj, which increases the difficulty of monitoring IGBTs’ health status online. In this paper, based on the collector current (Ic) and collector-emitter on-state voltage (Vce_on) online monitoring circuit, an online monitoring method of IGBT bond wire aging against interference is proposed. First, the bond wire aging model is established, and the Vce_on is selected as the monitoring parameter. Secondly, taking a three-phase inverter circuit as an example, the Vce_on and Ic waveforms of the IGBT module are monitored in real time, and the process of online monitoring is introduced accordingly. Finally, the experimental results indicate that the method proposed in this paper can accurately identify the aging state of IGBT bond wires under different conditions.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3962 ◽  
Author(s):  
Zilang Hu ◽  
Xinglai Ge ◽  
Dong Xie ◽  
Yichi Zhang ◽  
Bo Yao ◽  
...  

The aging fracture of bonding wire is one of the main reasons for failure of insulated gate bipolar transistor (IGBT). This paper proposes an online monitoring method for IGBT bonding wire aging that does not interfere with the normal operation of the IGBT module. A quantitative analysis of aging degree was first performed, and the results of multivariate and univariate monitoring were compared. Based on the relationship between the monitoring parameters and the aging of the IGBT bonding wire, gradual damage of the IGBT bond wire was implemented to simulate aging failure and obtain the aging data. Moreover, the change of junction temperature was considered to regulate monitoring parameters. Then, the aging degree was evaluated by an artificial neural network (ANN) algorithm. The experimental results showed the effectiveness of the proposed method.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 194
Author(s):  
Dan Luo ◽  
Minyou Chen ◽  
Wei Lai ◽  
Hongjian Xia ◽  
Xueni Ding ◽  
...  

Bond wire lift-off will cause an increase of remaining wires’ power dissipation, which usually is ignored for healthy modules. However, only partial wires’ power dissipation transfers through thermal path from junction to case, which will lead to overestimate the whole power dissipation from collector to emitter pole and underestimate the calculated thermal resistance using the proportion of temperature difference to power dissipation. A FEM model is established to show the change of heat flow after bond wires were removed, the temperature of bond wires increases, and the measured thermal resistance decrease after bond wires lift-off. It is validated by experimental results using open package Insulated Gate Bipolar Transistor (IGBT) modules under different current conditions. This conclusion might be helpful to indicate the bond wires lift-off and solder fatigue by comparing the change of measured thermal resistance. Using the Kelvin setup to measure thermal resistance will cause misjudgment of failure mode due to the ignoring of wires’ power dissipation. This paper proposed that the lift-off of bond wires will lead to underestimating the thermal resistance measurement, which will overestimate the lifetime of IGBT module and misjudge its state of health.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 851 ◽  
Author(s):  
Qingyi Kong ◽  
Mingxing Du ◽  
Ziwei Ouyang ◽  
Kexin Wei ◽  
William Hurley

The on-state voltage is an important electrical parameter of insulated gate bipolar transistor (IGBT) modules. Due to limits in instrumentation and methods, it is difficult to ensure accurate measurements of the on-state voltage in practical working conditions. Based on the physical structure and conduction mechanism of the IGBT module, this paper models the on-state voltage and gives a detailed method for extracting the on-state voltage. Experiments not only demonstrate the feasibility of the on-state voltage separation method but also suggest a method for measuring and extracting the model parameters. Furthermore, on-state voltage measurements and simulation results certified the accuracy of this method.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Shengqi Zhou ◽  
Luowei Zhou ◽  
Suncheng Liu ◽  
Pengju Sun ◽  
Quanming Luo ◽  
...  

Defect is one of the key factors in reducing the reliability of the insulated gate bipolar transistor (IGBT) module, so developing the diagnostic method for defects inside the IGBT module is an important measure to avoid catastrophic failure and improves the reliability of power electronic converters. For this reason, a novel diagnostic method based on the approximate entropy (ApEn) theory is presented in this paper, which can provide statistical diagnosis and allow the operator to replace defective IGBT modules timely. The proposed method is achieved by analyzing the cross ApEn of the gate voltages before and after the occurring of defects. Due to the local damage caused by aging, the intrinsic parasitic parameters of packaging materials or silicon chips inside the IGBT module such as parasitic inductances and capacitances may change over time, which will make remarkable variation in the gate voltage. That is to say the gate voltage is close coupled with the defects. Therefore, the variation is quantified and used as a precursor parameter to evaluate the health status of the IGBT module. Experimental results validate the correctness of the proposed method.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1066 ◽  
Author(s):  
Zhen Hu ◽  
Wenfeng Zhang ◽  
Juai Wu

Junction temperature is a key parameter that influences both the performance and the reliability of the insulated gate bipolar transistor (IGBT) module, while solder fatigue has a significant effect on the accuracy of junction temperature estimates using the electro-thermal model. In this paper, an improved electro-thermal model, which is independent of solder fatigue, is proposed to accurately estimate the junction temperature of IGBT module. Firstly, solder fatigue conditions are monitored in real time with the information of the case temperatures. Secondly, when solder fatigue is found, the update process of the electro-thermal model parameters is performed to match the model parameters with the fatigue device. With the above two-step process, the influence of solder fatigue on the accuracy of temperature estimates can be removed in good time. Experimental results are provided to validate the effectiveness of the proposed method.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1127 ◽  
Author(s):  
Jo ◽  
Kim ◽  
Cho ◽  
Lee

This paper presents the development of a hardware simulator based on the junction-temperature of insulated-gate bipolar transistor (IGBT) modules in modular multilevel converters (MMCs). The MMC consists of various power-electronics components, and the IGBT is the main factor determining the lifetime of the MMC. The failure of IGBTs is mostly due to the junction-temperature swing; thus, the thermal profile of the IGBT should be established to predict the lifetime. The thermal behavior depends on the current flowing to the IGBT, and the load-current profile is related to the application. To establish the thermal profile of the IGBT, the proposed hardware simulator generates various shapes of output currents while the junction temperature is measured. Additionally, a controller design is presented for simulation of the arm current, which includes a direct current component as well as an alternative current component with a fundamental frequency. The validity and performance of the proposed hardware simulator and its control methods are analyzed according to various experimental results.


2019 ◽  
Vol 66 (10) ◽  
pp. 8148-8160 ◽  
Author(s):  
Jun Zhang ◽  
Xiong Du ◽  
Yaoyi Yu ◽  
Shuai Zheng ◽  
Pengju Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document