scholarly journals HIL Simulation of a Tram Regenerative Braking System

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1379
Author(s):  
Tomislav Pavlović ◽  
Ivan Župan ◽  
Viktor Šunde ◽  
Željko Ban

Regenerative braking systems are an efficient way to increase the energy efficiency of electric rail vehicles. During the development phase, testing of a regenerative braking system in an electric vehicle is costly and potentially dangerous. For this reason, Hardware-In-the-Loop (HIL) simulation is a useful technique to conduct the system’s testing in real time where the physical parts of the system are replaced by simulation models. This paper presents a HIL simulation of a tram regenerative braking system performed on a scaled model. First, offline simulations are performed using a measured speed profile in order to validate the tram, supercapacitor, and power grid model, as well as the energy control algorithm. The results are then verified in the real-time HIL simulation in which the tram and power grid are emulated using a three-phase converter and LiFePO4 batteries. The energy flow control algorithm controls a three-phase converter which enables the control of energy flow within the regenerative braking system. The results validate the simulated regenerative braking system, making it applicable for implementation in a tram vehicle.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2411
Author(s):  
Ivan Radaš ◽  
Ivan Župan ◽  
Viktor Šunde ◽  
Željko Ban

Electric trams are one of the standard forms of public transport. They are characterized by large amounts of electric current and electric current gradient from the power grid, especially during acceleration. For this reason, a regenerative braking system is considered with the aim of reducing electric current peaks and increasing energy efficiency by reducing the total energy consumption of the power grid. A supercapacitor module is used as a storage device for storing and utilizing the braking energy. The supercapacitor module and the power grid constitute a hybrid energy system, for which a control algorithm has been developed. The control algorithm takes into account the influence of the elevation profile and the slope of the vehicle route in storing and using the braking energy. The operation of the algorithm was simulated and analyzed using the MATLAB/Simulink software package for tram lines with different elevation profiles.


2021 ◽  
Vol 11 (3) ◽  
pp. 1322
Author(s):  
Dariusz Zieliński ◽  
Karol Fatyga

This paper proposes a control algorithm for a hybrid power electronic AC/DC converter for prosumer applications operating under deep phase current asymmetry. The proposed system allows independent control of active and reactive power for each phase of the power converter without current pulsation on the DC link connected to an energy store. The system and its algorithm are based on a three-phase converter in four-wire topology (AC/DC 3p-4w) with two dual-active bridge (DC/DC) converters, interfaced with a supercapacitor and an energy storage. The control algorithm tests were carried out in a Hardware in the Loop environment. Obtained results indicate that operation with deep unbalances and powers of opposite signs in individual phases leads to current oscillations in the DC link. This phenomenon significantly limits energy storage utilization due to safety and durability reasons. The proposed algorithm significantly reduces the level of pulsation in the DC link which increases safety and reduces strain on lithium-ion storage technology, enabling their application in four-wire converter applications.


2020 ◽  
Author(s):  
Yongtao Zhao ◽  
Yiyong Yang ◽  
Xiuheng Wu ◽  
Xingjun Tao

Abstract Accurate pressure control and fast dynamic response are vital to the pneumatic electric braking system (PEBS) for that commercial vehicles require higher regulation precision of braking force on four wheels when braking force distribution is carried out under some conditions. Due to the lagging information acquisition, most feedback-based control algorithms are difficult to further improve the dynamic response of PEBS. Meanwhile, feedforward-based control algorithms like predictive control perform well in improving dynamic performance. but because of the large amount of computation and complexity of this kind of control algorithm, it cannot be applied in real-time on single-chip microcomputer, and it is still in the stage of theoretical research at present. To address this issue and for the sake of engineering reliability, this article presents a logic threshold control scheme combining analogous model predictive control (AMPC) and proportional control. In addition, an experimental device for real-time measuring PEBS multi-dynamic parameters is built. After correcting the key parameters, the precise model is determined and the influence of switching solenoid valve on its dynamic response characteristics is studied. For the control scheme, numerical and physical validation are executed to demonstrate the feasibility of the strategy and for the performance of the controller design. The experimental results show that the dynamic model of PEBS can accurately reflect its pressure characteristics. Furthermore, under different air source pressures, the designed controller can stably control the pressure output of PEBS and ensure that the error is within 8KPa. Compared with the traditional control algorithm, the rapidity is improved by 32.5%.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 83372-83383 ◽  
Author(s):  
Dawei Pi ◽  
Qing Cheng ◽  
Boyuan Xie ◽  
Hongliang Wang ◽  
Xianhui Wang

2012 ◽  
Vol 157-158 ◽  
pp. 542-545 ◽  
Author(s):  
Liang Chu ◽  
Liang Yao ◽  
Zi Liang Zhao ◽  
Wen Ruo Wei ◽  
Yong Sheng Zhang

The Anti-lock Braking System (ABS) of Electric Vehicle (EV) is improved in this paper. Based on the research of system structure and motor, a new method is proposed to adjust the threshold and coordinate the motor braking force with the friction braking force. So the traditional threshold control algorithm of ABS is improved for the EV. The simulation results based on the MATLAB/Simulink model indicate that the improved ABS can keep the wheels in the stability region and decrease the motor regenerative braking force as soon as possible. The balance between brake safety and energy recovery is achieved through this method.


2020 ◽  
Author(s):  
Elmer O. H. Catata ◽  
Pedro J. dos Santos Neto ◽  
Tárcio A. S. Barros ◽  
Ernesto Ruppert Filho

The autonomy of electric vehicles is under investigation by the scientific community,in which different solutions based on renewable energy resources, such as the photovoltaic, areproposed. A solution under study is the utilization of regenerative braking developed by theelectric motor vehicles. In this work, the addition of a regenerative braking is proposed aimingto increase the autonomy of electric bicycles. A two level, three-phase converter is applied todrive a brushless DC motor (BLDC). A comprehensive modeling of current and speed control arepresented in order to operate the machine in quadrants I and IV. The behavior of the Lithiumbattery charge is observed through its state-of-charge (SOC). Simulation results were obtainedby means of the SimPowerSystemsR©/Matlab/SimulinkR©software.


2015 ◽  
Vol 789-790 ◽  
pp. 878-882
Author(s):  
Bing Lu ◽  
Hong Wen He ◽  
Qun Ce Wang

Through the design way of reducing dimension, a control algorithm of the parallel compound braking is put forwarded. The flow of reducing dimension is designed, the sampling which is based on the Design of Experiment (DOE) and off-line deterministic optimization are accomplished. The reducing dimension of dual-motor coordinate coefficient is designed and the prediction model of parallel compound braking is constructed, which are based on the data of deterministic optimization. The analysis of reliability shows that the algorithm has a higher reliability and the energy recovery efficiency of the vehicle regenerative braking is improved under the condition of well braking stability.


Author(s):  
B. Prasanth ◽  
Deepa Kaliyaperumal ◽  
R. Jeyanthi ◽  
Saravanan Brahmanandam

In the present era, electric vehicles (EV) have revolutionized the world with their dominant features like cleanliness and high efficiency compared to that of the internal combustion (IC) engine-based vehicles. To crave for the higher efficiency of the EV during the braking, the kinetic energy of the EV is converted into electrical energy, which is harvested into storage system, called regenerative braking. Various techniques such as artificial neural network (ANN) and fuzzy-based controllers consider factors like state of charge of the battery and supercapacitor and brake demand for calculating the regenerative braking energy. A force distribution curve is designed to ensure that the braking force is distributed and applied on the four wheels simultaneously. In real-time optimization, an operating area is formed for maximizing the regenerative force which is evaluated by linear programming. It is proved that the drive range of the vehicle is increased by 25.7% compared to the one with non-RBS. In this work, RTO-based control loop for regenerative braking system is simulated in MATLAB/Simulink.


Sign in / Sign up

Export Citation Format

Share Document