scholarly journals Modeling and Prediction of Daily Traffic Patterns—WASK and SIX Case Study

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1637
Author(s):  
Róża Goścień ◽  
Aleksandra Knapińska ◽  
Adam Włodarczyk

The paper studies efficient modeling and prediction of daily traffic patterns in transport telecommunication networks. The investigation is carried out using two historical datasets, namely WASK and SIX, which collect flows from edge nodes of two networks of different size. WASK is a novel dataset introduced and analyzed for the first time in this paper, while SIX is a well-known source of network flows. For the considered datasets, the paper proposes traffic modeling and prediction methods. For traffic modeling, the Fourier Transform is applied. For traffic prediction, two approaches are proposed—modeling-based (the forecasting model is generated based on historical traffic models) and machine learning-based (network traffic is handled as a data stream where chunk-based regression methods are applied for forecasting). Then, extensive simulations are performed to verify efficiency of the approaches and their comparison. The proposed modeling method revealed high efficiency especially for the SIX dataset, where the average error was lower than 0.1%. The efficiency of two forecasting approaches differs with datasets–modeling-based methods achieved lower errors for SIX while machine learning-based for WASK. The average prediction error for SIX reached 3.36% while forecasting for WASK turned out extremely challenging.

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 833
Author(s):  
Irene Mirandola ◽  
Guido A. Berti ◽  
Roberto Caracciolo ◽  
Seungro Lee ◽  
Naksoo Kim ◽  
...  

This research provides an insight on the performances of machine learning (ML)-based algorithms for the estimation of the energy consumption in metal forming processes and is applied to the radial-axial ring rolling process. To define the mutual influence between ring geometry, process settings, and ring rolling mill geometries with the resulting energy consumption, measured in terms of the force integral over the processing time (FIOT), FEM simulations have been implemented in the commercial SW Simufact Forming 15. A total of 380 finite element simulations with rings ranging from 650 mm < DF < 2000 mm have been implemented and constitute the bulk of the training and validation datasets. Both finite element simulation settings (input), as well as the FI (output), have been utilized for the training of eight machine learning models, implemented with Python scripts. The results allow defining that the Gradient Boosting (GB) method is the most reliable for the FIOT prediction in forming processes, being its maximum and average errors equal to 9.03% and 3.18%, respectively. The trained ML models have been also applied to own and literature experimental cases, showing a maximum and average error equal to 8.00% and 5.70%, respectively, thus proving once again its reliability.


2021 ◽  
Vol 1 (1) ◽  
pp. 24-26
Author(s):  
Jiarui Yang ◽  
Wen-Hao Li ◽  
Dingsheng Wang

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Runzhi Zhang ◽  
Alejandro R. Walker ◽  
Susmita Datta

Abstract Background Composition of microbial communities can be location-specific, and the different abundance of taxon within location could help us to unravel city-specific signature and predict the sample origin locations accurately. In this study, the whole genome shotgun (WGS) metagenomics data from samples across 16 cities around the world and samples from another 8 cities were provided as the main and mystery datasets respectively as the part of the CAMDA 2019 MetaSUB “Forensic Challenge”. The feature selecting, normalization, three methods of machine learning, PCoA (Principal Coordinates Analysis) and ANCOM (Analysis of composition of microbiomes) were conducted for both the main and mystery datasets. Results Features selecting, combined with the machines learning methods, revealed that the combination of the common features was effective for predicting the origin of the samples. The average error rates of 11.93 and 30.37% of three machine learning methods were obtained for main and mystery datasets respectively. Using the samples from main dataset to predict the labels of samples from mystery dataset, nearly 89.98% of the test samples could be correctly labeled as “mystery” samples. PCoA showed that nearly 60% of the total variability of the data could be explained by the first two PCoA axes. Although many cities overlapped, the separation of some cities was found in PCoA. The results of ANCOM, combined with importance score from the Random Forest, indicated that the common “family”, “order” of the main-dataset and the common “order” of the mystery dataset provided the most efficient information for prediction respectively. Conclusions The results of the classification suggested that the composition of the microbiomes was distinctive across the cities, which could be used to identify the sample origins. This was also supported by the results from ANCOM and importance score from the RF. In addition, the accuracy of the prediction could be improved by more samples and better sequencing depth.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tanglong Yuan ◽  
Nana Yan ◽  
Tianyi Fei ◽  
Jitan Zheng ◽  
Juan Meng ◽  
...  

AbstractEfficient and precise base editors (BEs) for C-to-G transversion are highly desirable. However, the sequence context affecting editing outcome largely remains unclear. Here we report engineered C-to-G BEs of high efficiency and fidelity, with the sequence context predictable via machine-learning methods. By changing the species origin and relative position of uracil-DNA glycosylase and deaminase, together with codon optimization, we obtain optimized C-to-G BEs (OPTI-CGBEs) for efficient C-to-G transversion. The motif preference of OPTI-CGBEs for editing 100 endogenous sites is determined in HEK293T cells. Using a sgRNA library comprising 41,388 sequences, we develop a deep-learning model that accurately predicts the OPTI-CGBE editing outcome for targeted sites with specific sequence context. These OPTI-CGBEs are further shown to be capable of efficient base editing in mouse embryos for generating Tyr-edited offspring. Thus, these engineered CGBEs are useful for efficient and precise base editing, with outcome predictable based on sequence context of targeted sites.


Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 385-392
Author(s):  
Joeri Lenaerts ◽  
Hannah Pinson ◽  
Vincent Ginis

AbstractMachine learning offers the potential to revolutionize the inverse design of complex nanophotonic components. Here, we propose a novel variant of this formalism specifically suited for the design of resonant nanophotonic components. Typically, the first step of an inverse design process based on machine learning is training a neural network to approximate the non-linear mapping from a set of input parameters to a given optical system’s features. The second step starts from the desired features, e.g. a transmission spectrum, and propagates back through the trained network to find the optimal input parameters. For resonant systems, this second step corresponds to a gradient descent in a highly oscillatory loss landscape. As a result, the algorithm often converges into a local minimum. We significantly improve this method’s efficiency by adding the Fourier transform of the desired spectrum to the optimization procedure. We demonstrate our method by retrieving the optimal design parameters for desired transmission and reflection spectra of Fabry–Pérot resonators and Bragg reflectors, two canonical optical components whose functionality is based on wave interference. Our results can be extended to the optimization of more complex nanophotonic components interacting with structured incident fields.


2021 ◽  
Author(s):  
Jamal Ahmadov

Abstract The Tuscaloosa Marine Shale (TMS) formation is a clay- and liquid-rich emerging shale play across central Louisiana and southwest Mississippi with recoverable resources of 1.5 billion barrels of oil and 4.6 trillion cubic feet of gas. The formation poses numerous challenges due to its high average clay content (50 wt%) and rapidly changing mineralogy, making the selection of fracturing candidates a difficult task. While brittleness plays an important role in screening potential intervals for hydraulic fracturing, typical brittleness estimation methods require the use of geomechanical and mineralogical properties from costly laboratory tests. Machine Learning (ML) can be employed to generate synthetic brittleness logs and therefore, may serve as an inexpensive and fast alternative to the current techniques. In this paper, we propose the use of machine learning to predict the brittleness index of Tuscaloosa Marine Shale from conventional well logs. We trained ML models on a dataset containing conventional and brittleness index logs from 8 wells. The latter were estimated either from geomechanical logs or log-derived mineralogy. Moreover, to ensure mechanical data reliability, dynamic-to-static conversion ratios were applied to Young's modulus and Poisson's ratio. The predictor features included neutron porosity, density and compressional slowness logs to account for the petrophysical and mineralogical character of TMS. The brittleness index was predicted using algorithms such as Linear, Ridge and Lasso Regression, K-Nearest Neighbors, Support Vector Machine (SVM), Decision Tree, Random Forest, AdaBoost and Gradient Boosting. Models were shortlisted based on the Root Mean Square Error (RMSE) value and fine-tuned using the Grid Search method with a specific set of hyperparameters for each model. Overall, Gradient Boosting and Random Forest outperformed other algorithms and showed an average error reduction of 5 %, a normalized RMSE of 0.06 and a R-squared value of 0.89. The Gradient Boosting was chosen to evaluate the test set and successfully predicted the brittleness index with a normalized RMSE of 0.07 and R-squared value of 0.83. This paper presents the practical use of machine learning to evaluate brittleness in a cost and time effective manner and can further provide valuable insights into the optimization of completion in TMS. The proposed ML model can be used as a tool for initial screening of fracturing candidates and selection of fracturing intervals in other clay-rich and heterogeneous shale formations.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Osama Siddig ◽  
Ahmed Farid Ibrahim ◽  
Salaheldin Elkatatny

Unconventional resources have recently gained a lot of attention, and as a consequence, there has been an increase in research interest in predicting total organic carbon (TOC) as a crucial quality indicator. TOC is commonly measured experimentally; however, due to sampling restrictions, obtaining continuous data on TOC is difficult. Therefore, different empirical correlations for TOC have been presented. However, there are concerns about the generalization and accuracy of these correlations. In this paper, different machine learning (ML) techniques were utilized to develop models that predict TOC from well logs, including formation resistivity (FR), spontaneous potential (SP), sonic transit time (Δt), bulk density (RHOB), neutron porosity (CNP), gamma ray (GR), and spectrum logs of thorium (Th), uranium (Ur), and potassium (K). Over 1250 data points from the Devonian Duvernay shale were utilized to create and validate the model. These datasets were obtained from three wells; the first was used to train the models, while the data sets from the other two wells were utilized to test and validate them. Support vector machine (SVM), random forest (RF), and decision tree (DT) were the ML approaches tested, and their predictions were contrasted with three empirical correlations. Various AI methods’ parameters were tested to assure the best possible accuracy in terms of correlation coefficient (R) and average absolute percentage error (AAPE) between the actual and predicted TOC. The three ML methods yielded good matches; however, the RF-based model has the best performance. The RF model was able to predict the TOC for the different datasets with R values range between 0.93 and 0.99 and AAPE values less than 14%. In terms of average error, the ML-based models outperformed the other three empirical correlations. This study shows the capability and robustness of ML models to predict the total organic carbon from readily available logging data without the need for core analysis or additional well interventions.


Sign in / Sign up

Export Citation Format

Share Document