scholarly journals Interference Mitigation and Power Minimization in 5G Heterogeneous Networks

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1723
Author(s):  
Mayada Osama ◽  
Salwa El Ramly ◽  
Bassant Abdelhamid

Macro cells’ (MCs) densification with small cells (SCs) is one of the promising solutions to cope with the increasing demand for higher data rates in 5G heterogeneous networks (HetNets). Unfortunately, the interference that arises between these densely deployed SCs and their elevated power consumption have caused huge problems facing the 5G HetNets. In this paper, a new soft frequency reuse (SFR) scheme is proposed to minimize the interference and elevate the network throughput. The proposed scheme is based on on/off switching the SCs according to their interference contribution rate (ICR) values. It solves the interference problem of the densely deployed SCs by dividing the cell region into center and edge zones. Moreover, SCs on/off switching tackles the elevated power consumption problem and enhances the power efficiency of the 5G network. Furthermore, our paper tackles the irregular nature problem of 5G HetNets and compares between two different proposed shapes for the center zone of the SC: circular, and irregular shapes. Additionally, the optimum radius of the center zone, which maximizes the total system data rate, is obtained. The results show that the proposed scheme surpasses the traffic and the random on/off switching schemes, as it decreases the outage probability and enhances the total system data rate and power efficiency. Moreover, the results demonstrate the close performance of both the irregular and circular shapes for the center zone.

Author(s):  
Kha Ha ◽  
Tien Ha

This paper studies the problems of precoding designs to achieve the energy efficiency (EE) in the uplink heterogeneous networks in which the multiple small cells are deployed in a macro-cell.  We consider two design problems which maximize either the total system energy efficiency (SEE) or the minimum energy efficiency (MinEE) among users subject to the transmit power constraints at each user and interference constraints caused to the macro base station. Since the optimization problems are non-convex fractional programming in matrix variables, it cannot be straightforward to obtain the optimal solutions. To tackle with the non-convexity challenges of the design problems, we adopt the relationships between the minimum mean square error (MMSE) and achievable data rate to recast the EE problems into ones more amenable. Then, we employ the block coordinate ascent (BCA) and the Dinkelbach methods to develop efficient iterative algorithms in which the closed form solutions are obtained or the semi-definite programming (SDP) problems are solved at each iteration. Simulation results are provided to investigate the EE performance of the EE optimization as compared to those of the spectral efficiency (SE) optimization.


Author(s):  
Mohammed I. Aal-nouman ◽  
Osamah Abdullah ◽  
Noor Qusay A. Al Shaikhli

With the remarkable impact and fast growth of the mobile networks, the mobile base stations have been increased too, especially in the high population areas. These base stations will be overloaded by users, for that reason the small cells (like pico cells) were introduced. However, the inter-cell interference will be high in this type of Heterogeneous networks. There are many solutions to mitigate this interference like the inter-cell interference coordination (ICIC), and then the further enhanced ICIC (Fe-ICIC) where the almost blank subframes are used to give priority to the (victim users). But it could be a waste of bandwidth due to the unused subframes. For that reason, in this paper, we proposed an adaptive reduced power subframe that reduces its power ratio according to the user’s signal-to-interference-plus-noise ratio (SINR) in order to get a better throughput and to mitigate the intercell interference. When the user is far from the cell, the case will be considered as an edge user and will get a higher priority to be served first. The results show that the throughput of all users in the macro cells and pico cell will be improved when applying the proposed scheme in term of throughput for the users and the cells.


2014 ◽  
Vol 13 ◽  
pp. 27-41 ◽  
Author(s):  
Muhammad Zeeshan Shakir ◽  
Hina Tabassum ◽  
Khalid A. Qaraqe ◽  
Erchin Serpedin ◽  
Mohamed-Slim Alouini

2020 ◽  
Vol 10 (21) ◽  
pp. 7583
Author(s):  
Kun-Mo Lin ◽  
Kai-Cheng Wang ◽  
Yao-Sheng Chang ◽  
Shun-Yu Chuang

The present work investigates contributions of different heating mechanisms and power efficiency of atmospheric-pressure helium dielectric-barrier discharges (APHeDBDs) containing a small amount of N2 for temperature measurements by developing the numerical methodology combining the one-dimensional (1D) plasma fluid model (PFM) and 3D gas flow model (GFM) with simulated results validated by measurements including the discharge power consumption and temperature distribution. The discharge dynamics are modeled by the 1D PFM for evaluating the average heating source considering elastic collision, ion Joule heating, and exothermic reactions as the source term of energy equation solved in the 3D GFM. The simulated current density reaches 29 A m−2 which is close to that measured as 35 A m−2. The simulated power consumption is 2.0 W which is in good agreement with the average measured power consumption as 2.1 W. The simulated average gas temperature in the reactive zone is around 346 K which is also close to the rotational temperature determined. The analysis shows that elastic collision and ion Joule heating are dominant heating mechanisms contributing 23.9% and 65.8% to the heating source, respectively. Among ion species, N2+ and N4+ are dominant species contributing 44.1% and 50.7% to the heating source of ion Joule heating, respectively. The simulated average total heating source is around 5.6 × 105 W m−3 with the maximum reaching 3.5 × 106 W m−3 in the sheath region due to the contribution of ion Joule heating.


2018 ◽  
Vol 7 (4) ◽  
pp. 2569
Author(s):  
Priyanka Chauhan ◽  
Dippal Israni ◽  
Karan Jasani ◽  
Ashwin Makwana

Data acquisition is the most demanding application for the acquisition and monitoring of various sensor signals. The data received are processed in real-time environment. This paper proposes a novel Data Acquisition (DAQ) technique for better resource utilization with less power consumption. Present work has designed and compared advanced Quad Data Rate (QDR) technique with traditional Dual Data Rate (DDR) technique in terms of resource utilization and power consumption of Field Programmable Gate Array (FPGA) hardware. Xilinx ISE is used to verify results of FPGA resource utilization by QDR with state of the art DDR approach. The paper ratiocinates that QDR technique outperforms traditional DDR technique in terms of FPGA resource utilization.  


2013 ◽  
Vol 9 (3) ◽  
pp. 241-260 ◽  
Author(s):  
Fuu-Cheng Jiang ◽  
Hsiang-Wei Wu ◽  
Fang-Yi Leu ◽  
Chao-Tung Yang

Power efficiency is a crucially important issue in the IEEE 802.15.4/ZigBee sensor networks (ZSNs) for majority of sensor nodes equipped with non-rechargeable batteries. To increase the lifetime of sensor networks, each node must optimize power consumption as possible. Among open literatures, much research works have focused on how to optimally increase the probability of sleeping states using multifarious wake-up strategies. Making things different, in this article, we propose a novel optimization framework for alleviating power consumption of sensor node with the D-policy M/G/1 queuing approach. Toward green sensor field, the proposed power-saving technique can be applied to prolong the lifetime of ZSN economically and effectively. For the proposed data aggregation model, mathematical framework on performance measures has been formulated. Data simulation using MATLAB tool has been conducted for exploring the feasibility of the proposed approach. And also we analyze the average traffic load per node for tree-based ZSN. Focusing on ZigBee routers deployed at the innermost shell of ZSN, network simulation results validate that the proposed approach indeed provides a feasibly cost-effective approach for prolonging lifetime of ZSNs.


2019 ◽  
Vol 8 (2) ◽  
pp. 6527-6534

Massive Multi-Input and Multi-Output (MIMO) antenna system potentially provides a promising solution to improve energy efficiency (EE) for 5G wireless systems. The aim of this paper is to enhance EE and its limiting factors are explored. The maximum EE of 48 Mbit/Joule was achieved with 15 user terminal (UT)s. This problem is related to the uplink spectral efficiency with upper bound for future wireless networks. The maximal EE is obtained by optimizing a number of base station (BS) antennas, pilot reuse factor, and BSs density. We presented a power consumption model by deriving Shannon capacity calculations with closed-form expressions. The simulation result highlights the EE maximization with optimizing variables of circuit power consumption, hardware impairments, and path-loss exponent. Small cells achieve high EE and saturate to a constant value with BSs density. The MRC scheme achieves maximum EE of 36 Mbit/Joule with 12 UTs. The simulation results show that peak EE is obtained by deploying massive BS antennas, where the interference and pilot contamination are mitigated by coherent processing. The simulation results were implemented by using MATLAB 2018b.


Author(s):  
Archana B. ◽  
T. P. Surekha

The growing interest towards wireless communication advancement with smart devices has provided the desired throughput of wireless communication mechanisms. But, attaining high-speed data packets amenities is the biggest issue in different multimedia applications. Recently, OFDM has come up with the useful features for wireless communication however it faces interference issues at carrier level (intercarrier interferences). To resolve these interference issues in OFDM, various existing mechanisms were utilized cyclic prefix, but it leads to redundancy in transmitted data. Also, the transmission of this redundant data can take some more power and bandwidth. All these limitations factors can be removed from a parallel cancellation mechanism. The integration of parallel cancellation and Convolution Viterbi encoding and decoding in MIMO-OFDMA will be an effective solution to have high data rate which also associations with the benefits of both the architectures of MIMO and OFDMA modulation approaches. This paper deals with this integrated mechanism for efficient resource allocation and power consumption. For performance analysis, MIMO-OFDMA system is analyzed with three different approaches likeMIMO-OFDM system without parallel cancellation (MIMO-OFDMA-WPC), MIMO-OFDMA System with parallel cancellation (MIMO-OFDMA-PC) and proposed IMO-OFDMA system with parallel cancellation and Convolution Viterbi encoding/decoding (pMIMO-OFDMA-PC &CVed) for 4x4 transmitter and receiver. Through performance analysis, it is found that the proposed system achieved better resource allocation (bandwidth) with high data rate by minimized BER rate and achieved least power consumption with least BER.


Sign in / Sign up

Export Citation Format

Share Document