scholarly journals Automatic Pain Estimation from Facial Expressions: A Comparative Analysis Using Off-the-Shelf CNN Architectures

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1926
Author(s):  
Safaa El Morabit ◽  
Atika Rivenq ◽  
Mohammed-En-nadhir Zighem ◽  
Abdenour Hadid ◽  
Abdeldjalil Ouahabi ◽  
...  

Automatic pain recognition from facial expressions is a challenging problem that has attracted a significant attention from the research community. This article provides a comprehensive analysis on the topic by comparing some popular and Off-the-Shell CNN (Convolutional Neural Network) architectures, including MobileNet, GoogleNet, ResNeXt-50, ResNet18, and DenseNet-161. We use these networks in two distinct modes: stand alone mode or feature extractor mode. In stand alone mode, the models (i.e., the networks) are used for directly estimating the pain. In feature extractor mode, the “values” of the middle layers are extracted and used as inputs to classifiers, such as SVR (Support Vector Regression) and RFR (Random Forest Regression). We perform extensive experiments on the benchmarking and publicly available database called UNBC-McMaster Shoulder Pain. The obtained results are interesting as they give valuable insights into the usefulness of the hidden CNN layers for automatic pain estimation.

2021 ◽  
Author(s):  
Akhil Wilson ◽  
Raji Sukumar ◽  
N. Hemalatha

Abstract The prediction of agriculture yield is the one of the challenging problem in smart farming, we have predicted the yield of rice in the state of Kerala, India with the help of Machine Learning by considering the soil properties, micro climatic condition and area of the rice. Here we have used Decision Tree Regression, Random Forest Regression, Linear Regression, K Nearest Neighbour Regression, Xgboost Regression and Support Vector Regression algorithms in order to predict the rice yield. From the experiments we got KNN regression to be the best with 98.77% accuracy.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Yizhe Wang ◽  
Cunqian Feng ◽  
Yongshun Zhang ◽  
Sisan He

Precession is a common micromotion form of space targets, introducing additional micro-Doppler (m-D) modulation into the radar echo. Effective classification of space targets is of great significance for further micromotion parameter extraction and identification. Feature extraction is a key step during the classification process, largely influencing the final classification performance. This paper presents two methods for classifying different types of space precession targets from the HRRPs. We first establish the precession model of space targets and analyze the scattering characteristics and then compute electromagnetic data of the cone target, cone-cylinder target, and cone-cylinder-flare target. Experimental results demonstrate that the support vector machine (SVM) using histograms of oriented gradient (HOG) features achieves a good result, whereas the deep convolutional neural network (DCNN) obtains a higher classification accuracy. DCNN combines the feature extractor and the classifier itself to automatically mine the high-level signatures of HRRPs through a training process. Besides, the efficiency of the two classification processes are compared using the same dataset.


2010 ◽  
Vol 81 (10) ◽  
pp. 10E123 ◽  
Author(s):  
S. González ◽  
J. Vega ◽  
A. Murari ◽  
A. Pereira ◽  
J. M. Ramírez ◽  
...  

2017 ◽  
Vol 14 (23) ◽  
pp. 5551-5569 ◽  
Author(s):  
Luke Gregor ◽  
Schalk Kok ◽  
Pedro M. S. Monteiro

Abstract. The Southern Ocean accounts for 40 % of oceanic CO2 uptake, but the estimates are bound by large uncertainties due to a paucity in observations. Gap-filling empirical methods have been used to good effect to approximate pCO2 from satellite observable variables in other parts of the ocean, but many of these methods are not in agreement in the Southern Ocean. In this study we propose two additional methods that perform well in the Southern Ocean: support vector regression (SVR) and random forest regression (RFR). The methods are used to estimate ΔpCO2 in the Southern Ocean based on SOCAT v3, achieving similar trends to the SOM-FFN method by Landschützer et al. (2014). Results show that the SOM-FFN and RFR approaches have RMSEs of similar magnitude (14.84 and 16.45 µatm, where 1 atm  =  101 325 Pa) where the SVR method has a larger RMSE (24.40 µatm). However, the larger errors for SVR and RFR are, in part, due to an increase in coastal observations from SOCAT v2 to v3, where the SOM-FFN method used v2 data. The success of both SOM-FFN and RFR depends on the ability to adapt to different modes of variability. The SOM-FFN achieves this by having independent regression models for each cluster, while this flexibility is intrinsic to the RFR method. Analyses of the estimates shows that the SVR and RFR's respective sensitivity and robustness to outliers define the outcome significantly. Further analyses on the methods were performed by using a synthetic dataset to assess the following: which method (RFR or SVR) has the best performance? What is the effect of using time, latitude and longitude as proxy variables on ΔpCO2? What is the impact of the sampling bias in the SOCAT v3 dataset on the estimates? We find that while RFR is indeed better than SVR, the ensemble of the two methods outperforms either one, due to complementary strengths and weaknesses of the methods. Results also show that for the RFR and SVR implementations, it is better to include coordinates as proxy variables as RMSE scores are lowered and the phasing of the seasonal cycle is more accurate. Lastly, we show that there is only a weak bias due to undersampling. The synthetic data provide a useful framework to test methods in regions of sparse data coverage and show potential as a useful tool to evaluate methods in future studies.


2019 ◽  
Vol 11 (11) ◽  
pp. 3222 ◽  
Author(s):  
Pascal Schirmer ◽  
Iosif Mporas

In this paper we evaluate several well-known and widely used machine learning algorithms for regression in the energy disaggregation task. Specifically, the Non-Intrusive Load Monitoring approach was considered and the K-Nearest-Neighbours, Support Vector Machines, Deep Neural Networks and Random Forest algorithms were evaluated across five datasets using seven different sets of statistical and electrical features. The experimental results demonstrated the importance of selecting both appropriate features and regression algorithms. Analysis on device level showed that linear devices can be disaggregated using statistical features, while for non-linear devices the use of electrical features significantly improves the disaggregation accuracy, as non-linear appliances have non-sinusoidal current draw and thus cannot be well parametrized only by their active power consumption. The best performance in terms of energy disaggregation accuracy was achieved by the Random Forest regression algorithm.


2021 ◽  
Vol 5 (10) ◽  
pp. 57
Author(s):  
Vinícius Silva ◽  
Filomena Soares ◽  
João Sena Esteves ◽  
Cristina P. Santos ◽  
Ana Paula Pereira

Facial expressions are of utmost importance in social interactions, allowing communicative prompts for a speaking turn and feedback. Nevertheless, not all have the ability to express themselves socially and emotionally in verbal and non-verbal communication. In particular, individuals with Autism Spectrum Disorder (ASD) are characterized by impairments in social communication, repetitive patterns of behaviour, and restricted activities or interests. In the literature, the use of robotic tools is reported to promote social interaction with children with ASD. The main goal of this work is to develop a system capable of automatic detecting emotions through facial expressions and interfacing them with a robotic platform (Zeno R50 Robokind® robotic platform, named ZECA) in order to allow social interaction with children with ASD. ZECA was used as a mediator in social communication activities. The experimental setup and methodology for a real-time facial expression (happiness, sadness, anger, surprise, fear, and neutral) recognition system was based on the Intel® RealSense™ 3D sensor and on facial features extraction and multiclass Support Vector Machine classifier. The results obtained allowed to infer that the proposed system is adequate in support sessions with children with ASD, giving a strong indication that it may be used in fostering emotion recognition and imitation skills.


Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Marium Mehmood ◽  
Nasser Alshammari ◽  
Saad Awadh Alanazi ◽  
Fahad Ahmad

The liver is the human body’s mandatory organ, but detecting liver disease at an early stage is very difficult due to the hiddenness of symptoms. Liver diseases may cause loss of energy or weakness when some irregularities in the working of the liver get visible. Cancer is one of the most common diseases of the liver and also the most fatal of all. Uncontrolled growth of harmful cells is developed inside the liver. If diagnosed late, it may cause death. Treatment of liver diseases at an early stage is, therefore, an important issue as is designing a model to diagnose early disease. Firstly, an appropriate feature should be identified which plays a more significant part in the detection of liver cancer at an early stage. Therefore, it is essential to extract some essential features from thousands of unwanted features. So, these features will be mined using data mining and soft computing techniques. These techniques give optimized results that will be helpful in disease diagnosis at an early stage. In these techniques, we use feature selection methods to reduce the dataset’s feature, which include Filter, Wrapper, and Embedded methods. Different Regression algorithms are then applied to these methods individually to evaluate the result. Regression algorithms include Linear Regression, Ridge Regression, LASSO Regression, Support Vector Regression, Decision Tree Regression, Multilayer Perceptron Regression, and Random Forest Regression. Based on the accuracy and error rates generated by these Regression algorithms, we have evaluated our results. The result shows that Random Forest Regression with the Wrapper Method from all the deployed Regression techniques is the best and gives the highest R2-Score of 0.8923 and lowest MSE of 0.0618.


2021 ◽  
pp. 1-13
Author(s):  
R. Bhuvaneswari ◽  
S. Ganesh Vaidyanathan

Diabetic Retinopathy (DR) is one of the most common diabetic diseases that affect the retina’s blood vessels. Too much of the glucose level in blood leads to blockage of blood vessels in the retina, weakening and damaging the retina. Automatic classification of diabetic retinopathy is a challenging task in medical research. This work proposes a Mixture of Ensemble Classifiers (MEC) to classify and grade diabetic retinopathy images using hierarchical features. We use an ensemble of classifiers such as support vector machine, random forest, and Adaboost classifiers that use the hierarchical feature maps obtained at every pooling layer of a convolutional neural network (CNN) for training. The feature maps are generated by applying the filters to the output of the previous layer. Lastly, we predict the class label or the grade for the given test diabetic retinopathy image by considering the class labels of all the ensembled classifiers. We have tested our approaches on the E-ophtha dataset for the classification task and the Messidor dataset for the grading task. We achieved an accuracy of 95.8% and 96.2% for the E-ophtha and Messidor datasets, respectively. A comparison among prominent convolutional neural network architectures and the proposed approach is provided.


2019 ◽  
Vol 9 (11) ◽  
pp. 2218 ◽  
Author(s):  
Maria Grazia Violante ◽  
Federica Marcolin ◽  
Enrico Vezzetti ◽  
Luca Ulrich ◽  
Gianluca Billia ◽  
...  

This study proposes a novel quality function deployment (QFD) design methodology based on customers’ emotions conveyed by facial expressions. The current advances in pattern recognition related to face recognition techniques have fostered the cross-fertilization and pollination between this context and other fields, such as product design and human-computer interaction. In particular, the current technologies for monitoring human emotions have supported the birth of advanced emotional design techniques, whose main focus is to convey users’ emotional feedback into the design of novel products. As quality functional deployment aims at transforming the voice of customers into engineering features of a product, it appears to be an appropriate and promising nest in which to embed users’ emotional feedback with new emotional design methodologies, such as facial expression recognition. This way, the present methodology consists in interviewing the user and acquiring his/her face with a depth camera (allowing three-dimensional (3D) data), clustering the face information into different emotions with a support vector machine classificator, and assigning customers’ needs weights relying on the detected facial expressions. The proposed method has been applied to a case study in the context of agriculture and validated by a consortium. The approach appears sound and capable of collecting the unconscious feedback of the interviewee.


Sign in / Sign up

Export Citation Format

Share Document