scholarly journals Voltage Flip Efficiency Enhancement for Piezo Energy Harvesting

Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2400
Author(s):  
Vincent Frick ◽  
Liana Wassouf ◽  
Ehsan Jamshidpour

In this paper, we analyze the effect of an enhanced voltage flip technique on the power performance of a piezoelectric energy harvester. The enhanced voltage flip principle is based on a synchronized-switch-based architecture, and is referred to as FAR (Full Active Rectifier). It uses a tiny amount of the stored charge to boost the voltage flip. This work aims to demonstrate that, beside the enhanced flip efficiency, the FAR also contributes to improve the power efficiency of the harvester, especially under changing load constraint. Therefore, the paper proposes a thorough comparison between the FAR and its conventional counterpart, the Switch-only technique. The FAR is easy to implement and does not require any external inductor or capacitor. It only needs a reduced set of switches, an active diode and a simple control sequence, and can thus be implemented on a fully integrated circuit. The FAR can be used as a standalone voltage flip solution or in addition to further boost the flip efficiency in a state-of-the-art architecture such as SSHC for example. Tests were performed on a 0.35-µm process CMOS prototype IC. Experimental results revealed that the FAR extracts 19.1μW from an off-the-shelf piezoelectric transducer when the output voltage is regulated at 1V with 1 V open-circuit voltage and delivers up to 20% more power than the conventional Switch-only technique under load constraint. It also shows over 11× power efficiency improvement compared to a conventional diode-based full bridge rectifier.

Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 66 ◽  
Author(s):  
Amad Ud Din ◽  
Muhammad Kamran ◽  
Waqar Mahmood ◽  
Khursheed Aurangzeb ◽  
Abdulaziz Saud Altamrah ◽  
...  

In this research work, we investigated a dual switch (DS) active rectifier for the piezoelectric (PE) energy scavenging system. In the proposed DS active rectifier configuration, two extra switches are shunted across the PE transducer which helps the PE transducer’s capacitor in charging and discharging which results in maximum power extraction from the PE transducer. Moreover, in the proposed rectifier configuration comparator controlled active diodes are used instead of conventional/passive diodes to minimize the threshold voltage V T H drop. The proposed DS active rectifier design is fabricated in a 1-poly 6-metal 180-nm standard CMOS process. The simulation and measured results of the proposed DS active rectifier design have the better power conversion efficiency (PCE) of 91.5 %, which definitely helps in extracting more power than the conventional full bridge rectifier (FBR).


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1185
Author(s):  
Yosuke Ishida ◽  
Toru Tanzawa

This paper proposes an AC-DC converter for electrostatic vibration energy harvesting. The converter is composed of a CMOS full bridge rectifier and a CMOS shunt regulator. Even with 1 V CMOS, the open circuit voltage of the energy transducer can be as high as 10 V and beyond. Bandgap reference (BGR) inputs a regulated voltage, which is controlled by the output voltage of the BGR. Built-in power-on reset is introduced, which can minimize the silicon area and power to function normally found upon start-up. The AC-DC converter was fabricated with a 65 nm low-Vt 1 V CMOS with 0.081 mm2. 1 V regulation was measured successfully at 20–70 °C with a power conversion efficiency of 43%.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1939
Author(s):  
Muhammad Bilawal Khan ◽  
Hassan Saif ◽  
Yoonmyung Lee

A fully integrated piezoelectric energy harvesting interface is proposed for harvesting energy from irregular human motion. To handle irregular pulse inputs generated by the piezoelectric transducer (PZT), the proposed harvesting interface includes a wake-up controller that activates the harvesting interface only when human motion is detected and deformation is applied on the piezoelectric material, thereby keeping static power loss low. The PZT output voltage is increased to its peak voltage by removing any type of external load capacitance seen by the PZT during its deformation. Once the peak voltage is detected, a multi-voltage conversion-ratio-based switched-capacitor circuit is activated to transfer PZT-generated energy to the battery in multiple ratio steps to maximize the conversion efficiency, with the help of a carefully designed harvesting controller. To deal with open-circuit voltages (VOCS) higher than the maximum voltage tolerated (VMAX) by available technology, capacitive partial electric charge extraction is activated every time the PZT output voltage approaches the VMAX. The proposed harvesting interface extracts 3.37 times more energy than a conventional full-bridge rectifier-based harvesting scheme.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 575
Author(s):  
Mei Yu Soh ◽  
S. Lawrence Selvaraj ◽  
Lulu Peng ◽  
Kiat Seng Yeo

LEDs are highly energy efficient and have substantially longer lifetimes compared to other existing lighting technologies. In order to facilitate the new generation of LED devices, approaches to improve power efficiency with increased integration level for lighting device should be analysed. This paper proposes a fully on-chip integrated LED driver design implemented using heterogeneous integration of gallium nitride (GaN) devices atop BCD circuits. The performance of the proposed design is then compared with the conventional fully on-board integration of power devices with the LED driver integrated circuit (IC). The experimental results confirm that the fully on-chip integrated LED driver achieves a consistently higher power efficiency value compared with the fully on-board design within the input voltage range of 4.5–5.5 V. The maximal percentage improvement in the efficiency of the on-chip solution compared with the on-board solution is 18%.


Author(s):  
Guangya Ding ◽  
Hongjun Luo ◽  
Jun Wang ◽  
Guohui Yuan

A novel lever piezoelectric energy harvester (LPEH) was designed for installation in an actual roadway for energy harvesting. The model incorporates a lever module that amplifies the applied traffic load and transmits it to the piezoelectric ceramic. To observe the piezoelectric growth benefits of the optimized LPEH structure, the output characteristics and durability of two energy harvesters, the LPEH and a piezoelectric energy harvester (PEH) without a lever, were measured and compared by carrying out piezoelectric performance tests and traffic model experiments. Under the same loading condition, the open circuit voltages of the LPEH and PEH were 20.6 and 11.7 V, respectively, which represents a 76% voltage increase for the LPEH compared to the PEH. The output power of the LPEH was 21.51 mW at the optimal load, which was three times higher than that of the PEH (7.45 mW). The output power was linearly dependent on frequency and load, implying the potential application of the module as a self-powered speed sensor. When tested during 300,000 loading cycles, the LPEH still exhibited stable structural performance and durability.


2018 ◽  
Vol 67 ◽  
pp. 01010
Author(s):  
Alfonsina Abat Amelenan Torimtubun ◽  
Anniza Cornelia Augusty ◽  
Eka Maulana ◽  
Lusi Ernawati

Indonesia is located along the equator lines with the high intensity of solar radiation averaging about 4.5 kWh of electrical energy/day. This potential leads to the selfsustaining energy possibility fulfilling the electricity needs. Due to their unique electronic structures and high-cost merit over the existing commercial PV technologies, perovskite solar cells (PSCs) have emerged as the next-generation photovoltaic candidate. Their highest power efficiency can be achieved of up to 22.1% in the last 5-6 years. However, this high efficiency came from CH3NH3PbI3 materials which contain lead, a toxic material. Herein calcium titanate (CT) as a lead-free perovskite material were synthesized through sintering of calcium carbonate (CaCO3) and titanium oxide (TiO2) by the sol-gel method. CT powders were characterized by SEM, XRF, FTIR and XRD then applied it onto the mesoporous heterojunction PSCs, with a device architecture ITO/TiO2/CaTiO3/C/ITO. By manipulating the raw material stoichiometry and heating temperature in the synthesis of CaTiO3, the device shows the highest power conversion efficiency (PCE) of 2.12%, shortcircuit current density (JSC) of 0.027 mA cm-2, open circuit voltage (VOC) of 0.212 V and fill factor (FF) of 53.90%. This sample can be an alternative way to create lead-free, largescale, and low-cost perovskite solar cells.


Author(s):  
Jui-Ta Chien ◽  
Yung-Hsing Fu ◽  
Chao-Ting Chen ◽  
Shun-Chiu Lin ◽  
Yi-Chung Shu ◽  
...  

This paper proposes a broadband rotational energy harvesting setup by using micro piezoelectric energy harvester (PEH). When driven in different rotating speed, the PEH can output relatively high power which exhibits the phenomenon of frequency up-conversion transforming the low frequency of rotation into the high frequency of resonant vibration. It aims to power self-powered devices used in the applications, like smart tires, smart bearings, and health monitoring sensors on rotational machines. Through the excitation of the rotary magnetic repulsion, the cantilever beam presents periodically damped oscillation. Under the rotational excitation, the maximum output voltage and power of PEH with optimal impedance is 28.2 Vpp and 663 μW, respectively. The output performance of the same energy harvester driven in ordinary vibrational based excitation is compared with rotational oscillation under open circuit condition. The maximum output voltage under 2.5g acceleration level of vibration is 27.54 Vpp while the peak output voltage of 36.5 Vpp in rotational excitation (in 265 rpm).


Sign in / Sign up

Export Citation Format

Share Document