scholarly journals Compact Differential-Fed Planar Filtering Antennas

Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1241
Author(s):  
Emadeldeen Hassan ◽  
Denys Martynenko ◽  
Eddie Wadbro ◽  
Gunter Fischer ◽  
Martin Berggren

This paper proposes novel low-profile differential-fed planar antennas with embedded sharp frequency selectively. The antennas are compact and easy to integrate with differential devices without matching baluns. The antenna design is formulated as a topology optimization problem, where requirements on impedance bandwidth, directivity, and filtering are used as the design objectives. The optimized antennas operate over the frequency band 6.0–8.5 GHz. The antennas have reflection coefficients below −15 dB, cross-polarization levels below −42 dB, a maximum gain of 6.0 ± 0.5 dB, and a uniform directivity over more than 130° beamwidth angle in the frequency band of interest. In addition, the antennas exhibit sharp roll-off between the operational band and frequencies around the 5.8 GHz WiFi band and the 10 GHz X-band. One antenna has been fabricated with a good match between simulation and measurement results.

2016 ◽  
Vol 9 (3) ◽  
pp. 621-627 ◽  
Author(s):  
Idris Messaoudene ◽  
Tayeb A. Denidni ◽  
Abdelmadjid Benghalia

In this paper, a microstrip-fed U-shaped dielectric resonator antenna (DRA) is simulated, designed, and fabricated. This antenna, in its simple configuration, operates from 5.45 to 10.8 GHz. To enhance its impedance bandwidth, the ground plane is first modified, which leads to an extended bandwidth from 4 to 10.8 GHz. Then by inserting a rectangular metallic patch inside the U-shaped DRA, the bandwidth is increased more to achieve an operating band from 2.65 to 10.9 GHz. To validate these results, an experimental antenna prototype is fabricated and measured. The obtained measurement results show that the proposed antenna can provide an ultra-wide bandwidth and a symmetric bidirectional radiation patterns. With these features, the proposed antenna is suitable for ultra-wideband applications.


Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 317-320
Author(s):  
Saeid Karamzadeh ◽  
Vahid Rafiei ◽  
Hasan Saygin

Abstract In this work circularly polarization diversity has been achieved by utilizing two Schottky diodes on low profile cavity-backed substrate integrated waveguide (CBSIW). In comparison with other studies in the literature, the size of antenna has been reduced to 0.54λg × 0.76λg by helping a 50-Ohm coaxial feed line. The impedance bandwidth, axial ratio bandwidth and antenna gain are improved to 10.02 %, 5.2 % and 7.68dBi, respectively. In addition, the proposed antenna can generate either a left-hand circularly polarized (LHCP) or a right-hand circularly polarized (RHCP) radiation. The developed antenna was fabricated and tested and the achieved results were in good agreement with the simulated one.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Mengfei Xiong ◽  
Junping Duan ◽  
Binzhen Zhang

A simplified notched design method for the Vivaldi antenna is exhibiting high frequency-band-selectivity characteristics. By suitably introducing half-wavelength resonator (HWR) and complementary capacitively loaded loop (CCLL), the notched-band selectivity is promoted while maintaining the wide impedance bandwidth of the antenna applicable for wireless communications. HWR is bent in the middle to focus the first notch pole, and the second notch pole is obtained by CCLL on the radiating patch. Additionally, the resonant frequency of the notched pole can be determined by the position and size of two loaded resonators in theoretical analysis, thereby realizing a wideband antenna with the desired notched band. Finally, the Vivaldi antenna of loading resonator was fabricated to verify the feasibility of this new method. Measured and simulated experimental results reveal that the antenna exhibits directional pattern in the passband, low gain at the band-rejection, and excellent selectivity within a frequency range. The simulation and measurement results are in good agreement. The proposed antenna achieves S11<−10 dB in 2.6–13.7 GHz and a notch band from 4.49 to 6.64 GHz to reject IEEE 802.11a and HIPERLAN/2 frequency band. Moreover, the proposed antenna has good frequency selectivity, and its gain is good enough in the passband with peak gain up to 10.8 dBi. This antenna design presents frequency suitability, demonstrating that a UWB antenna with a controllable notched band has been realized.


Circuit World ◽  
2019 ◽  
Vol 46 (1) ◽  
pp. 25-31
Author(s):  
Kanchana D. ◽  
Radha Sankararajan ◽  
Sreeja B.S. ◽  
Manikandan E.

Purpose A novel low profile frequency selective surface (FSS) with a band-stop response at 10 GHz is demonstrated. The purpose of this designed FSS structure is to reject the X-band (8-12 GHz) for the application of shielding. The proposed FSS structure having the unit cell dimension of 8 × 8 mm2, the miniaturization of the FSS unit cell in terms of λ0 is 0.266 λ0 × 0.266 λ0, where λ0 is free space wavelength. The designed FSS provides 4 GHz bandwidth with insertion loss of 15 dB. The transverse electric (TE) and transverse magnetic (TM) modes of the proposed design are same because of polarization independent characteristics and hold the angularly stable frequency response for both TE and TM mode polarization. Both the simulation and measurement results are in good agreement to each other. Design/methodology/approach The proposed FSS design contains square-shaped PEC material, which is placed on the substrate and the shape of the circle and rectangle is etched over the PEC material. The PEC material of the patch dimension is 0.0175 mm. The substrate used for the proposed design is FR4 lossy with the thickness of 0.8 mm and permittivity εr = 4.3 having a loss tangent of 0.02. Findings To find a new design and miniaturized FSS structure is discussed. Originality/value 100%


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Mahdi Jalali ◽  
Tohid Sedghi ◽  
Shahin Shafei

A novel configuration of a printed monopole antenna with a very compact size for satisfying WLAN operations at the 5.2/5.8 GHz and also for X-band operations at the 10 GHz has been proposed. The antenna includes a simple square-shaped patch as the radiator, the rotated U-shaped conductor back plane element with embedded strip on it, and the partial rectangular ground surface. By using the rotated U-shaped conductor-backed plane with proper values, good impedance matching and improvement in bandwidth can be achieved, at the lower and upper bands. The impedance bandwidth forS11<-10 dB is about 1.15 GHz for 5 GHz band and 5.3 GHz for X-band. The measured peak gains are about 1.9 dBi at WLAN-band and 4.2 dBi at X-band. The experimental results represent that the realized antenna with good omnidirectional radiation characteristics, enough impedance bandwidth, and reasonable gains can be appropriate for various applications of the future developed technologies and handheld devices.


Author(s):  
Mohamed El Atrash ◽  
Mahmoud A. Abdalla ◽  
Hadia M. Elhennawy

Abstract Proposed is a wideband, low profile, fully flexible, and all-textile-based slotted triangular antenna loaded with a 2 × 2 textile-inspired artificial magnetic conductor to be worn on the wrist. The integrated antenna design is designed to cover the frequency band from 3.1 to 6.5 GHz. The integrated design has two main resonances, where the first one is at 3.5 GHz, which can serve the WiMAX communication standard, while the second is at 5.8 GHz, which can serve the Industrial, Scientific and Medical (ISM)-band. The incorporated textile materials are composed of the conductive and dielectric fabrics that are realized by ShieldIt and Felt, respectively. When simulated against the human model wrist, the integrated antenna design displayed a realized gain of 6.71 dBi and radiation efficiency of 79.1%, at 3.5 GHz. Furthermore, at 5.8 GHz, it displayed a realized gain of 7.82 dBi and total efficiency performances of 66.1%. Moreover, it accomplished very low SAR levels within the antenna frequency band. Averaged over 1 g of tissue, it exhibited maximum SAR levels of 3.28 × 10−6 and 9.37 × 10−7 W/kg at 3.5 and 5.8 GHz, respectively. For the bent scenarios, the integrated antenna design displayed robustness when bent at an angle of 20 and 40°. Finally, measurement results are illustrated and analyzed. Based on the presented results, the suggested all-textile integrated antenna design might be designated for integration with the wristband to monitor the user health conditions through many possible frequency channels.


2021 ◽  
Author(s):  
Akanksha Singh ◽  
Arvind Kumar ◽  
Binod Kumar Kanaujia

Abstract A novel compact low profile MIMO antenna is designed and implemented with high isolation for the X band applications. Proposed MIMO geometry is incorporated with two monopoles which are excited by 50 Ω feed line. To enhance the isolation between inter-elements meander line structures are is identically placed. These meander line structures are reducing the mutual coupling up to 26 dB. In the proposed MIMO antenna two elements cover the entire frequency range between 7.4-11.8 GHz for the X band applications. Meander line structure is working as a decoupling network which improves the isolation considerably. The overall size of the MIMO antenna is 25 × 30 × 1 mm3, and it offers inter-element isolation of >26 dB, envelope correlation coefficient is less than 0.2, and directivity gain >9.99 over the resonating frequency range. The proposed MIMO antenna model is fabricated, and measurement results are verified with simulated results. The antenna shows the satisfactory gain of around 4.8 dB in entire frequency range. The antenna shows the satisfactory gain of around 4.5 dB in entire frequency range.


2020 ◽  
Vol 10 (6) ◽  
pp. 6557-6562
Author(s):  
S. Alotaibi ◽  
A. A. Alotaibi

In this work, a new ultra-wideband (UWB) antenna design with 2.08GHz to 12GHz impedance bandwidth and triple-band specifications is presented. The proposed antenna is formed by a truncated square patch, a partial ground plane, and a 50Ω microstrip line. Three different types of slots were used in order to induce notched bands. A C-shaped slot is etched on the radiating patch to obtain a notched band in 3.31-4.21GHz for WiMAX. An inverted U-shaped slot in the micro-strip line induces a second notched band in order to reduce the interference with the WLAN [5.04-6.81GHz]. Finally, two inverted L-shaped slots around the micro-ribbon line on the ground plane allow the X-band [9.13 to 10.75GHz]. The antenna has dimensions of 32×28×1.6mm3. The Ansoft software (HFSS) was used to simulate the proposed structure. The simulation results are in good agreement with the measurement results. The antenna shows an omnidirectional radiation pattern.


2019 ◽  
Vol 11 (10) ◽  
pp. 1069-1074 ◽  
Author(s):  
Zicheng Niu ◽  
Hou Zhang ◽  
Qiang Chen ◽  
Tao Zhong

AbstractIn this paper, a novel decoupling technique for closely spaced E-plane patch antennas using defect ground structure (DGS) is proposed. The electric field coupling between the antennas is suppressed by etching DGS which consists of a pair of rectangular slots and four stubs on the ground plane. Moreover, unlike the other methods, the DGS is not etched in the middle of the antennas but loaded along the outer edge of the radiated patch. Thus, through the adopted technology the distance between the antenna elements is reduced and the isolation is increased. To validate the improvements by adopting the proposed technology, the array with DGS loading has been fabricated and then measured. The measurement results show that designed antennas have 95 MHz 10-dB impedance bandwidth, which is 25 MHz higher than that of the antenna without DGS. More importantly, isolation improvements have been increased from 8.5 to 31.3 dB by using the decoupling technique when the antennas are placed with a 0.032 λ0 edge-to-edge distance, where λ0 is the free-space wavelength. Therefore, this technique can be widely applied to improve isolation in a compact and low profile antenna system.


Sign in / Sign up

Export Citation Format

Share Document