scholarly journals Simulation and Experimental Validation of Novel Trajectory Planning Strategy to Reduce Vibrations and Improve Productivity of Robotic Manipulator

Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 581
Author(s):  
Andrea Ariano ◽  
Valerio Perna ◽  
Adolfo Senatore ◽  
Roberto Scatigno ◽  
Fabio Nicolò ◽  
...  

This paper aims at investigating vibrational behaviors of the industrial manipulator Racer 7-1.4, designed and manufactured by COMAU S.p.A., with the target of new trajectory planning strategies to improve productivity rate without any loss of positioning accuracy. Starting from the analysis of a 9DoF multi-body system with lumped parameter, the first natural frequency of the robot was calculated in seven reference positions. Then, static and dynamic simulations were run by applying saturated ramp input and large motions to analyze the vibrational behavior of the manipulator. This research underlines that the optimal way to design the robot move is to set its duration at twice a period of free oscillation according to the first vibrational mode. Due to strong analogy of dynamic response of both 1DoF and 9DoF robot models, the closed-form solution of the 1DoF undamped system—featured by natural frequency equal to the first frequency of the 9DoF system—may be successfully adopted by the real-time trajectory planning process to predict residual vibration at move end-condition. This strategy was confirmed by experimental tests, allowing either residual vibration decrease and execution time reduction as well.

2000 ◽  
Author(s):  
Arnoldo Garcia ◽  
Arnold Lumsdaine ◽  
Ying X. Yao

Abstract Many studies have been performed to analyze the natural frequency of beams undergoing both flexural and torsional loading. For example, Adam (1999) analyzed a beam with open cross-sections under forced vibration. Although the exact natural frequency equation is available in literature (Lumsdaine et al), to the authors’ knowledge, a beam with an intermediate mass and support has not been considered. The models are then compared with an approximate closed form solution for the natural frequency. The closed form equation is developed using energy methods. Results show that the closed form equation is within 2% percent when compared to the transcendental natural frequency equation.


Author(s):  
Michael R. Hummels ◽  
Raymond J. Cipra

Abstract An on-line trajectory modification and path planning strategy is developed which will allow a robot to respond in an efficient manner to real time sensory input. The approach developed here eliminates the need for solving many equations by developing a closed form algorithm. It uses two fourth order curves for the transition phases with a constant velocity section in between. Although this is done by providing additional constraints to the curve, it makes the problem of determining the trajectory much easier to solve, while providing continuous higher derivatives. It also provides a safe and efficient way of modifying trajectories based on the robots joint rate limits, joint acceleration limits, jerk limits, and desired time interval between trajectory modifications for a 4-1-4 trajectory. This method involves the solution of one second order equation and is directed toward real time applications.


Author(s):  
Samir A. Emam ◽  
Ali H. Nayfeh

An exact solution for the postbuckling configurations of composite beams is presented. The equations governing the axial and transverse vibrations of a composite laminated beam accounting for the midplane stretching are presented. The inplane inertia and damping are neglected, and hence the two equations are reduced to a single equation governing the transverse vibrations. This equation is a nonlinear fourth-order partial-integral differential equation. We find that the governing equation for the postbuckling of a symmetric or antisymmetric composite beam has the same form as that of a metallic beam. A closed-form solution for the postbuckling configurations due to a given axial load beyond the critical buckling load is obtained. We followed Nayfeh, Anderson, and Kreider and exactly solved the linear vibration problem around the first buckled configuration to obtain the fundamental natural frequencies and their corresponding mode shapes using different fiber orientations. Characteristic curves showing variations of the maximum static deflection and the fundamental natural frequency of postbuckling vibrations with the applied axial load for a variety of fiber orientations are presented. We find out that the line-up orientation of the laminate strongly affects the static buckled configuration and the fundamental natural frequency. The ratio of the axial stiffness to the bending stiffness is a crucial parameter in the analysis. This parameter can be used to help design and optimize the composite beams behavior in the postbuckling domain.


Author(s):  
F. He ◽  
A. Habib

Thanks to recent advances at the hardware (e.g., emergence of reliable platforms at low cost) and software (e.g., automated identification of conjugate points in overlapping images) levels, UAV-based 3D reconstruction has been widely used in various applications. However, mitigating the impact of outliers in automatically matched points in UAV imagery, especially when dealing with scenes that has poor and/or repetitive texture, remains to be a challenging task. In spite of the fact that existing literature has already demonstrated that incorporating prior motion information can play an important role in increasing the reliability of the matching process, there is a lack of methodologies that are mainly suited for UAV imagery. Assuming the availability of prior information regarding the trajectory of a UAV-platform, this paper presents a two-point approach for reliable estimation of Relative Orientation Parameters (ROPs) of UAV-based images. This approach is based on the assumption that the UAV platform is moving at a constant flying height while maintaining the camera in a nadir-looking orientation. For this flight scenario, a closed-form solution that can be derived using a minimum of two pairs of conjugate points is established. In order to evaluate the performance of the proposed approach, experimental tests using real stereo-pairs acquired from different UAV platforms have been conducted. The derived results from the comparative performance analysis against the Nistér five-point approach demonstrate that the proposed two-point approach is capable of providing reliable estimate of the ROPs from UAV-based imagery in the presence of poor and/or repetitive texture with high percentage of matching outliers.


Author(s):  
Oliviero Giannini ◽  
Aldo Sestieri

When there is a parameter varying in a system, so that one natural frequency approaches another one, the phenomenon of veering is generally found and highly coupled modes are the emerging characteristic of this dynamic behavior. It is far more difficult to find systems that instead of a veering present crossing between modes, and the crossing phenomenon is almost unreported in the scientific literature, unless the case of uncoupled modes is considered. In this paper, the two-modes interaction is presented. In particular, mode veering and mode crossing are introduced and investigated through a simple analytic 2-dof model that allows for closed-form solution. Then, an experimental setup, appropriately designed to study the two-modes veering and crossing is presented and experimental evidences of both phenomena are measured showing the main characteristics of such modal interaction..


Author(s):  
Mikael Mo¨ller ◽  
Anders Olsson

Ratcheting in nuclear class-1 piping is prevented by the rules of NB-3600. Analytical considerations of shake-down limits for piping subjected to internal pressure and cyclic secondary bending are presented and compared to the rules of NB-3600. A closed form solution for the ratcheting rate of a pressurized pipe subjected to cyclic secondary bending is derived for the case of ideal elastoplasticity. Moreover, the importance of constitutive modeling in numerical simulation of piping ratcheting is discussed. The predictions from the linear Prager, the non-linear Armstrong-Frederick and the non-linear Chaboche constitutive models are investigated in relation to published experimental tests on pipe ratcheting.


Author(s):  
F. He ◽  
A. Habib

Thanks to recent advances at the hardware (e.g., emergence of reliable platforms at low cost) and software (e.g., automated identification of conjugate points in overlapping images) levels, UAV-based 3D reconstruction has been widely used in various applications. However, mitigating the impact of outliers in automatically matched points in UAV imagery, especially when dealing with scenes that has poor and/or repetitive texture, remains to be a challenging task. In spite of the fact that existing literature has already demonstrated that incorporating prior motion information can play an important role in increasing the reliability of the matching process, there is a lack of methodologies that are mainly suited for UAV imagery. Assuming the availability of prior information regarding the trajectory of a UAV-platform, this paper presents a two-point approach for reliable estimation of Relative Orientation Parameters (ROPs) of UAV-based images. This approach is based on the assumption that the UAV platform is moving at a constant flying height while maintaining the camera in a nadir-looking orientation. For this flight scenario, a closed-form solution that can be derived using a minimum of two pairs of conjugate points is established. In order to evaluate the performance of the proposed approach, experimental tests using real stereo-pairs acquired from different UAV platforms have been conducted. The derived results from the comparative performance analysis against the Nistér five-point approach demonstrate that the proposed two-point approach is capable of providing reliable estimate of the ROPs from UAV-based imagery in the presence of poor and/or repetitive texture with high percentage of matching outliers.


1996 ◽  
Vol 63 (4) ◽  
pp. 1004-1010 ◽  
Author(s):  
Bingen Yang

The transient response analysis presented in Part I is generalized for distributed damped systems which are viscoelastically constrained or combined with lumped parameter systems. An energy formulation is introduced to regain symmetry for the spatial differential operators, which is destroyed in the original equations of motion by the constraints, and the coupling of distributed and lumped elements. As a result, closed-form solution is systematically obtained in eigenfunction series.


Robotica ◽  
2015 ◽  
Vol 33 (10) ◽  
pp. 2114-2136 ◽  
Author(s):  
Javad Enferadi ◽  
Amir Shahi

SUMMARYIn this paper, a novel 3(RPSP)-S fully spherical parallel manipulator (SPM) is introduced. Also, an innovative method based on the geometry of the manipulator is presented for solving the forward position problem of the manipulator. The presented method provides a framework for the future research to solve the forward position problem of the other fully spherical PMs (for examples 3(UPS)-S and 3(RSS)-S). In the proposed method, two coupled trigonometric equations are obtained by utilizing the geometry of the manipulator and Rodrigues' rotation formula. Using Bezout's elimination technique, the two coupled equations lead to a polynomial of degree eight. We show that the polynomial is minimal and optimal. Furthermore, the other method is proposed for selecting an admissible solution of the forward position problem. This algorithm is required to control modeling and dynamic simulations.


Sign in / Sign up

Export Citation Format

Share Document