scholarly journals Novel Full TMR Placement Techniques for High-Speed Radiation Tolerant Digital Integrated Circuits

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1936
Author(s):  
Karel Appels ◽  
Jeffrey Prinzie

This paper presents a novel physical implementation methodology for high-speed Triple Modular Redundant (TMR) digital integrated circuits for harsh radiation environment applications. An improved distributed approach is presented to constrain redundant branches of Triple Modular Redundant (TMR) digital logic cells using repetitive, interleaved micro-floorplans. To optimally constrain the placement of both sequential and combinational cells, the TMR netlist is used to segment the the logic into unrelated groups allowing sharing without compromising reliability. The technique was evaluated in a 65 nm bulk CMOS technology and a comparison is made to conventional methods.

Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 432 ◽  
Author(s):  
Jeffrey Prinzie ◽  
Karel Appels ◽  
Szymon Kulis

This paper presents a novel scalable physical implementation method for high-speed Triple Modular Redundant (TMR) digital integrated circuits in radiation-hard designs. The implementation uses a distributed placement strategy compared to a commonly used bulk 3-bank constraining method. TMR netlist information is used to optimally constrain the placement of both sequential cells and combinational cells. This approach significantly reduces routing complexity, net lengths and dynamic power consumption with more than 60% and 20% respectively. The technique was simulated in a 65 nm Complementary Metal-Oxide Semiconductor (CMOS) technology.


2021 ◽  
Vol 11 (1) ◽  
pp. 429
Author(s):  
Min-Su Kim ◽  
Youngoo Yang ◽  
Hyungmo Koo ◽  
Hansik Oh

To improve the performance of analog, RF, and digital integrated circuits, the cutting-edge advanced CMOS technology has been widely utilized. We successfully designed and implemented a high-speed and low-power serial-to-parallel (S2P) converter for 5G applications based on the 28 nm CMOS technology. It can update data easily and quickly using the proposed address allocation method. To verify the performances, an embedded system (NI-FPGA) for fast clock generation on the evaluation board level was also used. The proposed S2P converter circuit shows extremely low power consumption of 28.1 uW at 0.91 V with a core die area of 60 × 60 μm2 and operates successfully over a wide clock frequency range from 5 M to 40 MHz.


1995 ◽  
Vol 06 (01) ◽  
pp. 163-210 ◽  
Author(s):  
STEPHEN I. LONG

The performance of high speed digital integrated circuits, defined here as those requiring operation at high clock frequency, is generally more sensitive to material properties and process techniques than ICs used at lower frequencies. Obtaining high speed and low power concurrently is especially challenging. Circuit architectures must be selected for the device and application appropriately. This paper presents simple models for high speed digital IC performance and applies these to the FET and bipolar transistor. Heterojunction devices are compared with those using single or binary materials. Circuits for high speed SSI and low power VLSI applications are described, and their performance is surveyed.


2004 ◽  
Vol 14 (02) ◽  
pp. 367-378 ◽  
Author(s):  
NATHAN NOWLIN ◽  
JOHN BAILEY ◽  
BOB TURFLER ◽  
DAVE ALEXANDER

This paper describes design choices and tradeoffs made when designing total-dose hardness into an advanced CMOS integrated circuit. Closed geometry transistors are described and compared, emphasizing their radiation tolerant performance. Speed and area tradeoffs incurred in circuit design when using such closed geometry transistors are illustrated in the design of an advanced IEEE 1394 cable physical layer mixed-signal interface chip.


Sign in / Sign up

Export Citation Format

Share Document