scholarly journals Analysis of State-of-the-Art Spin-Transfer-Torque Nonvolatile Flip-Flops Considering Restore Yield in the Near/Sub-Threshold Voltage Region

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2118
Author(s):  
Gwang Hui Choi ◽  
Taehui Na

Recently, the leakage power consumption of Internet of Things (IoT) devices has become a main issue to be tackled, due to the fact that the scaling of process technology increases the leakage current in the IoT devices having limited battery capacity, resulting in the reduction of battery lifetime. The most effective method to extend the battery lifetime is to shut-off the device during standby mode. For this reason, spin-transfer-torque magnetic-tunnel-junction (STT-MTJ) based nonvolatile flip-flop (NVFF) is being considered as a strong candidate to store the computing data. Since there is a risk that the MTJ resistance may change during the read operation (i.e., the read disturbance problem), NVFF should consider the read disturbance problem to satisfy reliable data restoration. To date, several NVFFs have been proposed. Even though they satisfy the target restore yield of 4σ, most of them do not take the read disturbance into account. Furthermore, several recently proposed NVFFs which focus on the offset-cancellation technique to improve the restore yield have obvious limitation with decreasing the supply voltage (VDD), because the offset-cancellation technique uses switch operation in the critical path that can exacerbate the restore yield in the near/sub-threshold region. In this regard, this paper analyzes state-of-the-art STT-MTJ based NVFFs with respect to the voltage region and provides insight that a simple circuit having no offset-cancellation technique could achieve a better restore yield in the near/sub-threshold voltage region. Monte–Carlo HSPICE simulation results, using industry-compatible 28 nm model parameters, show that in case of VDD of 0.6 V, complex NVFF circuits having offset tolerance characteristic have a better restore yield, whereas in case of VDD of 0.4 V with sizing up strategy, a simple NVFF circuit having no offset tolerance characteristic has a better restore yield.

Author(s):  
T. Kimura

This chapter discusses the spin-transfer effect, which is described as the transfer of the spin angular momentum between the conduction electrons and the magnetization of the ferromagnet that occurs due to the conservation of the spin angular momentum. L. Berger, who introduced the concept in 1984, considered the exchange interaction between the conduction electron and the localized magnetic moment, and predicted that a magnetic domain wall can be moved by flowing the spin current. The spin-transfer effect was brought into the limelight by the progress in microfabrication techniques and the discovery of the giant magnetoresistance effect in magnetic multilayers. Berger, at the same time, separately studied the spin-transfer torque in a system similar to Slonczewski’s magnetic multilayered system and predicted spontaneous magnetization precession.


2008 ◽  
Vol 600-603 ◽  
pp. 895-900 ◽  
Author(s):  
Anant K. Agarwal ◽  
Albert A. Burk ◽  
Robert Callanan ◽  
Craig Capell ◽  
Mrinal K. Das ◽  
...  

In this paper, we review the state of the art of SiC switches and the technical issues which remain. Specifically, we will review the progress and remaining challenges associated with SiC power MOSFETs and BJTs. The most difficult issue when fabricating MOSFETs has been an excessive variation in threshold voltage from batch to batch. This difficulty arises due to the fact that the threshold voltage is determined by the difference between two large numbers, namely, a large fixed oxide charge and a large negative charge in the interface traps. There may also be some significant charge captured in the bulk traps in SiC and SiO2. The effect of recombination-induced stacking faults (SFs) on majority carrier mobility has been confirmed with 10 kV Merged PN Schottky (MPS) diodes and MOSFETs. The same SFs have been found to be responsible for degradation of BJTs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1229
Author(s):  
Andrii Vovk ◽  
Sergey A. Bunyaev ◽  
Pavel Štrichovanec ◽  
Nikolay R. Vovk ◽  
Bogdan Postolnyi ◽  
...  

Thin polycrystalline Co2FeGe films with composition close to stoichiometry have been fabricated using magnetron co-sputtering technique. Effects of substrate temperature (TS) and post-deposition annealing (Ta) on structure, static and dynamic magnetic properties were systematically studied. It is shown that elevated TS (Ta) promote formation of ordered L21 crystal structure. Variation of TS (Ta) allow modification of magnetic properties in a broad range. Saturation magnetization ~920 emu/cm3 and low magnetization damping parameter α ~ 0.004 were achieved for TS = 573 K. This in combination with soft ferromagnetic properties (coercivity below 6 Oe) makes the films attractive candidates for spin-transfer torque and magnonic devices.


SPIN ◽  
2017 ◽  
Vol 07 (03) ◽  
pp. 1740014 ◽  
Author(s):  
Cormac Ó Coileáin ◽  
Han Chun Wu

From historical obscurity, antiferromagnets are recently enjoying revived interest, as antiferromagnetic (AFM) materials may allow the continued reduction in size of spintronic devices. They have the benefit of being insensitive to parasitic external magnetic fields, while displaying high read/write speeds, and thus poised to become an integral part of the next generation of logical devices and memory. They are currently employed to preserve the magnetoresistive qualities of some ferromagnetic based giant or tunnel magnetoresistance systems. However, the question remains how the magnetic states of an antiferromagnet can be efficiently manipulated and detected. Here, we reflect on AFM materials for their use in spintronics, in particular, newly recognized antiferromagnet Mn2Au with its in-plane anisotropy and tetragonal structure and high Néel temperature. These attributes make it one of the most promising candidates for AFM spintronics thus far with the possibility of architectures freed from the need for ferromagnetic (FM) elements. Here, we discuss its potential for use in ferromagnet-free spintronic devices.


2021 ◽  
Vol 118 (25) ◽  
pp. 252407
Author(s):  
Kyuhwe Kang ◽  
Won-Bin Lee ◽  
Dong-Kyu Lee ◽  
Kyung-Jin Lee ◽  
Gyung-Min Choi

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 122
Author(s):  
Peipei Xu ◽  
Junqiu Li ◽  
Chao Sun ◽  
Guodong Yang ◽  
Fengchun Sun

The accurate estimation of a lithium-ion battery’s state of charge (SOC) plays an important role in the operational safety and driving mileage improvement of electrical vehicles (EVs). The Adaptive Extended Kalman filter (AEKF) estimator is commonly used to estimate SOC; however, this method relies on the precise estimation of the battery’s model parameters and capacity. Furthermore, the actual capacity and battery parameters change in real time with the aging of the batteries. Therefore, to eliminate the influence of above-mentioned factors on SOC estimation, the main contributions of this paper are as follows: (1) the equivalent circuit model (ECM) is presented, and the parameter identification of ECM is performed by using the forgetting-factor recursive-least-squares (FFRLS) method; (2) the sensitivity of battery SOC estimation to capacity degradation is analyzed to prove the importance of considering capacity degradation in SOC estimation; and (3) the capacity degradation model is proposed to perform the battery capacity prediction online. Furthermore, an online adaptive SOC estimator based on capacity degradation is proposed to improve the robustness of the AEKF algorithm. Experimental results show that the maximum error of SOC estimation is less than 1.3%.


Sign in / Sign up

Export Citation Format

Share Document