scholarly journals Improved Modulated Carrier Controlled PFC Boost Converter Using Charge Current Sensing Method

Energies ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 717 ◽  
Author(s):  
Jintae Kim ◽  
Chung-Yuen Won

An improved modulated carrier control (MCC) method is proposed to offer high power factor (PF) and low total harmonic distortion (THD) at a wide input voltage range and load variation. The conventional MCC method not only requires a multiplier and divider, but also is hard to be implemented with a micro controller unit without a high frequency oscillator. To overcome the problem and maintain the advantages of the conventional MCC method, the proposed MCC method adopts a current integrator, an output voltage amplifier, a zero-current duration (ZCD) demodulator of the boost inductor, and a carrier generator. Thus, it can remove a multiplier and well, as it allows for being operable with a general micro control unit. This paper presents an operation principle of the proposed control method. To verify the proposed control method, experimental results with 400 W PFC boost converter is demonstrated.

2020 ◽  
Vol 15 (3) ◽  
pp. 1-12
Author(s):  
Ana Isabela Araújo Cunha ◽  
Antonio José Sobrinho De Sousa ◽  
Edson Pinto Santana ◽  
Robson Nunes De Lima ◽  
Fabian Souza De Andrade ◽  
...  

This work presents a CMOS four quadrant analog multiplier architecture for application as the synapse element in analog cellular neural networks. For this reason, the circuit has voltage-mode inputs and a current-mode output and the chief design targets are compactness and low energy consumption. A signal application method is proposed that avoids voltage reference generators, which contributes to reduce sensitivity to supply voltage variation. Performance analysis through simulation has been accomplished for a design in CMOS 130 nm technology with 163 µm2 total active area. The circuit features ±50 mV input voltage range, 86 µW static power and ‑28.4 dB maximum total harmonic distortion. A simple technique for manual calibration is also presented.


2012 ◽  
Vol 21 (03) ◽  
pp. 1250024 ◽  
Author(s):  
CHAIWAT SAKUL ◽  
KOBCHAI DEJHAN

This paper describes squaring and square-rooting circuits operable on low voltage supplies, with their application proposed hereby as vector-summation and four-quadrant multiplier circuits. These circuits make use of a flipped voltage follower (FVF) as fundamental circuit. A detail classification of basic topologies derived from the FVF is given. The proposed circuits have simple structure, wide input range and low power consumption as well as small number of devices. All circuits are also examined and supported by a set of simulations with PSpice program. The circuits can operate at power supply of ±0.7 volts, the input voltage range of the squaring circuit is ±0.8 volts with 1.59% relative error and 1.78 μW power dispersion, the input current of the square-rooting circuit is about 50 μA with 0.55% relative error and 1.4 μW power dispersion and the vector-summation circuit have linearity error of 0.23% and 2.92 μW power dispersion. As in four-quadrant multiplier circuit, the total harmonic distortion of the multiplier is less than 1.2% for 0.8 VP-P input signal at 1 MHz fundamental frequency. Experimental result is carried out to confirm the operation by using commercial CMOS transistor arrays (CD4007). These circuits are highly expected to be effective in further application of the low voltage analog signal processing.


2019 ◽  
Vol 54 (11) ◽  
pp. 3118-3134 ◽  
Author(s):  
Yang Jiang ◽  
Man-Kay Law ◽  
Zhiyuan Chen ◽  
Pui-In Mak ◽  
Rui P. Martins

2014 ◽  
Vol 23 (03) ◽  
pp. 1450038 ◽  
Author(s):  
LING-FENG SHI ◽  
HUI-LI GUAN ◽  
QIN-QIN LI ◽  
XIN-QUAN LAI

A novel control method for the critical conduction mode (CRM) power factor correction (PFC) converter is presented, which reduces the size of the boost inductor in the system with wide input-voltage range and improves the efficiency of the system with low input voltage. By introducing the following boost circuit, the output voltage in the application circuit varies with the input root mean square (RMS) voltage to reduce the demand for the large size of the inductor and the efficiency of the system keeps high under the low input voltage. A novel CRM PFC control system with smaller size inductor and higher efficiency is achieved by applied the following boost method to the core control circuits. Experiment results show that the inductance value of the boost inductor is 430 μH using the presented PFC control system and 700 μH using the traditional PFC control system when the input voltage varies from 85 V to 265 V. The novel control method decreases the inductor's value at 38.2%, and the efficiency of the system improves at 1.62% under the input voltage of 85 V.


Author(s):  
Mohammad Maalandish ◽  
Seyed Hossein Hosseini ◽  
Mehran Sabahi ◽  
Pouyan Asgharian

PurposeThe main purpose of this paper is to select appropriate voltage vectors in the switching techniques and, by selecting the proper voltage vectors, be able to achieve a DC link with the same outputs and a symmetric multi-level inverter. Design/methodology/approachThe proposed structure, a two-stage DC–AC symmetric multi-level inverter with modified Model Predictive Control (MMPC) method, is presented for Photovoltaic (PV) applications. The voltage of DC-link capacitors of the boost converter is controlled by MMPC control method to select appropriate switching vectors for the multi-level inverter. The proposed structure is provided for single-phase power system, which increases 65 V input voltage to 220 V/50 Hz output voltage, with 400 V DC link. Simulation results of proposed structure with MMPC method are carried out by PSCAD/EMTDC software. FindingsBased on the proposed structure and control method, total harmonic distortion (THD) reduces, which leads to lower power losses and higher circuit reliability. In addition, reducing the number of active switches in current path causes to lower voltage stress on the switches, lower PV leakage current and higher overall efficiency. Originality/valueIn the proposed structure, a new control method is presented that can make a symmetric five-level voltage with lower THD by selecting proper switching for PV applications.


2014 ◽  
Vol 3 (3) ◽  
pp. 101-121 ◽  
Author(s):  
S. Aiswariya ◽  
R. Dhanasekaran

This paper proposes an AC-DC converter with the application of active type soft switching techniques. Boost converter with active snubber is used to achieve power factor correction. Boost converter main switch uses Zero Voltage Transition switching for turn on and Zero Current Transition switching for turn off. The active snubber auxillary switch uses Zero Current Switching for both turn on and turn off. Since all the switches of the proposed circuit are soft switched, overall component stress has been greatly reduced and the output DC voltage is expected to have low ripples. A small amount of auxillary switch current is made to flow to the output side by the help of coupling inductor. The proposed circuit is simulated using MATLAB Simulink. All the related waveforms are shown for the reference. The power factor is measured as 0.99 showing that the input current and input voltage is in phase with each other. The PFC circuit has very less number of components with smaller size and can be controlled easily at a wide line and load range.


Sign in / Sign up

Export Citation Format

Share Document