scholarly journals Reconstruction and Prediction of Flow Field Fluctuation Intensity and Flow-Induced Noise in Impeller Domain of Jet Centrifugal Pump Using Gappy POD Method

Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 111 ◽  
Author(s):  
Rong Guo ◽  
Rennian Li ◽  
Renhui Zhang

To analyze the interrelations among impeller blade geometry, flow field fluctuation intensity and impeller-induced hydrodynamic noise of jet centrifugal pump (JCP), a Gappy proper orthogonal decomposition (POD) method combined with computational fluid dynamics/computational fluid acoustics (CFD/CFA) technique was proposed to reconstruct and predict the unsteady flow field fluctuation intensity and flow-induced noise in impeller region. The snapshot sets were composed of blade profile parameters, flow field fluctuation intensity data and the data of sound pressure level of hydrodynamic noise in the frequency domain. Similar mesh reconstruction and flow field interpolation were carried out to have the same number of flow field data. The snapshot sets were decomposed into a linear combination of orthogonal bases using the singular value decomposition (SVD) method. The orthogonal basis coefficients corresponding to the objective variables were fitted by the least square method. The results show that the proposed method has a good accuracy in predicting the flow field fluctuation intensity and flow-induced noise of the JCP impeller domain. The relative error of pressure fluctuation intensity field is less than 4.0%, relative velocity fluctuation intensity field is less than 3.0%, turbulent kinetic energy fluctuation intensity field is less than 4.5%, and impeller-induced hydrodynamic noise is less than 10%. Taking the method as a surrogate model to predict the flow field fluctuation intensity and the radiation level of hydrodynamic noise in the optimization process of centrifugal pump impeller, it could not only reduce the calculation amount and time significantly and improve optimization speed and efficiency greatly but could also provide a reference for vibration characteristics of the models.

1999 ◽  
Vol 121 (3) ◽  
pp. 627-632 ◽  
Author(s):  
Kevin A. Kaupert ◽  
Thomas Staubli

Hysteresis in a pump characteristic results from instability phenomena involving complex three dimensional flow with recirculation. The unsteady flow field on the top and bottom branches of a hysteresis loop in a high specific speed (ωs = 1.7) centrifugal pump characteristic was experimentally evaluated. A hypothesis for recirculation zones and prerotation as power dissipaters is proposed for explaining the discrepancy in the pressure and shaft power hysteresis. The experimental investigation was performed in both the rotating and stationary frame. In the rotating frame 25 miniature pressure transducers mounted in an impeller blade passage were sampled with a telemetry system. In the stationary frame a fast response probe was implemented. The changing impeller flow field manifested itself between the two branches of the hysteresis with increasing stochastic pressure fluctuations. Using this information the position, size, and strength of the impeller recirculation was quantitatively determined. Theoretically the rate of change of useful hydraulic power in the hysteresis regime during transient pump operation was found to be a function of throttling rate. Quasi-steady behavior existed for slow throttling, |dφ/dt| < 0.005 s−1. A second-order nonlinear dependence on the throttle rate was determined for the change of useful flow power during the commencement/cessation of the impeller recirculation.


2021 ◽  
pp. 002029402110223
Author(s):  
Baocheng Shi ◽  
Kun Xue ◽  
Jianpeng Pan ◽  
XingKai Zhang ◽  
Ruomeng Ying ◽  
...  

In this study, a non-stirred Particle Image Velocimetry (PIV) testing device is developed to measure the flow field in a solid–liquid two-phase centrifugal pump. The pump casing and impeller are made of an organic glass material. Two types of impellers are designed considering different structure parameters. The performance curves of the pump are obtained for the different impellers at a rotating speed of 900 rpm with particle concentrations of 0%, 3%, 5%, and 10%. The flow fields for water and a solid–liquid two-phase mixture for the two impellers are measured utilizing the PIV system in a centrifugal rotating frame at the designed condition. The distribution of the particles, together with its influence on the performance of the different impellers, is analyzed. From a comparison of the relative velocity vector fields, the following can be concluded. First, the pump with a double arc-shaped profile demonstrated a more uniform and stable flow field distribution and higher performance than that with a single arc profile. Secondly, the solid particles were distributed mainly at the outlet of the impeller and volute wall, whereas the concentration distribution of the larger particles tended to match the pressure surface. This research can provide theoretical guidance for the design and optimization of two-phase flow centrifugal pumps.


2020 ◽  
Vol 12 (9) ◽  
pp. 168781402096063
Author(s):  
Xiaorui Cheng ◽  
Tianpeng Li ◽  
Peng Wang

In order to study the influence of blade outlet cutting width on hydrodynamic excitation noise of the centrifugal pump with low specific speed, five schemes are used to perform V-shaped cutting on the outlet of the impeller blade are studied in this study. Based on Lighthill acoustic analogy, combining computational fluid dynamics and computational acoustics, RNG k-ε turbulence model is used to calculate internal unsteady flow field of the centrifugal pump, and the acoustic solution is based on the flow field calculation. The results show that the pressure pulsation can reflect the sound pressure level to a certain extent; proper cutting of the blade outlet can improve the flow state of the rear cavity of the centrifugal pump and make the flow uniform; the V-shaped cutting of the blade outlet also can reduce the dynamic and static interference between the impeller outlet and the volute tongue, effectively reducing the sound pressure level of the internal sound field, when the blade outlet cutting width is a/ b2 = 33.33%, the inlet sound pressure level and the outlet sound pressure level are decreased by 4.8% and 7.2%, respectively. In terms of internal sound field, the sound pressure level at the outlet of the pump is obviously higher than that at the inlet.


Author(s):  
Weihui Xu ◽  
Xiaoke He ◽  
Xiao Hou ◽  
Zhihao Huang ◽  
Weishu Wang

AbstractCavitation is a phenomenon that occurs easily during rotation of fluid machinery and can decrease the performance of a pump, thereby resulting in damage to flow passage components. To study the influence of wall roughness on the cavitation performance of a centrifugal pump, a three-dimensional model of internal flow field of a centrifugal pump was constructed and a numerical simulation of cavitation in the flow field was conducted with ANSYS CFX software based on the Reynolds normalization group k-epsilon turbulence model and Zwart cavitation model. The cavitation can be further divided into four stages: cavitation inception, cavitation development, critical cavitation, and fracture cavitation. Influencing laws of wall roughness of the blade surface on the cavitation performance of a centrifugal pump were analyzed. Research results demonstrate that in the design process of centrifugal pumps, decreasing the wall roughness appropriately during the cavitation development and critical cavitation is important to effectively improve the cavitation performance of pumps. Moreover, a number of nucleation sites on the blade surface increase with the increase in wall roughness, thereby expanding the low-pressure area of the blade. Research conclusions can provide theoretical references to improve cavitation performance and optimize the structural design of the pump.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 886
Author(s):  
Cui Dai ◽  
Chao Guo ◽  
Yiping Chen ◽  
Liang Dong ◽  
Houlin Liu

The strong noise generated during the operation of the centrifugal pump harms the pump group and people. In order to decrease the noise of the centrifugal pump, a specific speed of 117.3 of the centrifugal pump is chosen as a research object. The bionic modification of centrifugal pump blades is carried out to explore the influence of different bionic structures on the noise reduction performance of centrifugal pumps. The internal flow field and internal sound field of bionic blades are studied by numerical calculation and test methods. The test is carried out on a closed pump test platform which includes external characteristics and a flow noise test system. The effects of two different bionic structures on the external characteristics, acoustic amplitude–frequency characteristics and flow field structure of a centrifugal pump, are analyzed. The results show that the pit structure has little influence on the external characteristic parameters, while the sawtooth structure has a relatively great influence. The noise reduction effect of the pit structure is aimed at the wide-band noise, while the sawtooth structure is aimed at the discrete noise of the blade-passing frequency (BPF) and its frequency doubling. The noise reduction ability of the sawtooth structure is not suitable for high-frequency bands.


Author(s):  
Leilei Ji ◽  
Wei Li ◽  
Weidong Shi ◽  
Fei Tian ◽  
Shuo Li ◽  
...  

In order to study the effect of different numbers of impeller blades on the performance of mixed-flow pump “saddle zone”, the external characteristic test and numerical simulation of mixed-flow pumps with three different impeller blade numbers were carried out. Based on high-precision numerical prediction, the internal flow field and tip leakage flow field of mixed flow pump under design conditions and stall conditions are investigated. By studying the vorticity transport in the stall flow field, the specific location of the high loss area inside the mixed flow pump impeller with different numbers of blades is located. The research results show that the increase in the number of impeller blades improve the pump head and efficiency under design conditions. Compared to the 4-blade impeller, the head and efficiency of the 5-blade impeller are increased by 5.4% and 21.9% respectively. However, the increase in the number of blades also leads to the widening of the “saddle area” of the mixed-flow pump, which leads to the early occurrence of stall and increases the instability of the mixed-flow pump. As the mixed-flow pump enters the stall condition, the inlet of the mixed-flow pump has a spiral swirl structure near the end wall for different blade numbers, but the depth and range of the swirling flow are different due to the change in the number of blades. At the same time, the change in the number of blades also makes the flow angle at 75% span change significantly, but the flow angle at 95% span is not much different because the tip leakage flow recirculates at the leading edge. Through the analysis of the vorticity transport results in the impeller with different numbers of blades, it is found that the reasons for the increase in the values of the vorticity transport in the stall condition are mainly impacted by the swirl flow at the impeller inlet, the tip leakage flow at the leading edge and the increased unsteady flow structures.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1628 ◽  
Author(s):  
Hongliang Wang ◽  
Bing Long ◽  
Chuan Wang ◽  
Chen Han ◽  
Linjian Li

An impeller blade with a slot structure can affect the velocity distribution in the impeller flow passage of the centrifugal pump, thus affecting the pump’s performance. Various slot structure geometric parameter combinations were tested in this study to explore this relationship: slot position p, slot width b1, slot deflection angle β, and slot depth h with (3–4) levels were selected for each factor on an L16 orthogonal test table. The results show that b1 and h are the major factors influencing pump performance under low and rated flow conditions, while p is the major influencing factor under the large flow condition. The slot structure close to the front edge of the impeller blade can change the low-pressure region of the suction inlet of the impeller flow passage, thus improving the fluid velocity distribution in the impeller. Optimal slot parameter combinations according to the actual machining precision may include a small slot width b1, slot depth h of ¼ b, slot deflection angle β of 45°–60°, and slot position p close to the front edge of the blade at 20–40%.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668529 ◽  
Author(s):  
Wen-wu Song ◽  
Li-chao Wei ◽  
Jie Fu ◽  
Jian-wei Shi ◽  
Xiu-xin Yang ◽  
...  

The backflow vortexes at the suction connection in high-speed centrifugal pumps have negative effect on the flow field. Setting an orifice plate in front of the inducer is able to decrease the negative effect caused by backflow vortexes. The traditional plate is able to partially control the backflow vortexes, but a small part of the vortex is still in the inlet and the inducer. Four new types of orifice plates were created, and the control effects on backflow vortexes were analyzed. The ANSYS-CFX software was used to numerically simulate a high-speed centrifugal pump. The variations of streamline and velocity vectors at the suction connection were analyzed. Meanwhile, the effects of these plates on the impeller pressure and the internal flow field of the inducer were analyzed. Numerically, simulation and experimental data analysis methods were used to compare the head and efficiency of the high-speed pumps. The results show that the C-type orifice plate can improve the backflow vortex, reduce the low-pressure area, and improve the hydraulic performance of the high-speed pump.


Sign in / Sign up

Export Citation Format

Share Document