scholarly journals Provincial Carbon Emissions Efficiency and Its Influencing Factors in China

2019 ◽  
Vol 11 (8) ◽  
pp. 2355 ◽  
Author(s):  
Wang ◽  
Wang ◽  
Zhang ◽  
Dang

We calculated provincial carbon emissions efficiency and related influencing factors in China with the purpose of providing a reference for other developing countries to develop a green economy. Using panel data covering the period from 2004–2016 from 30 provinces in China, we calculated the carbon emission performance (CEP) and the technology gap ratio of carbon emission (TGR) with the data envelopment analysis (DEA) method and the meta-frontier model separately to analyze provincial carbon emissions efficiency in China. No matter which indicator was employed, we found that distinct differences exist in the eastern, the central, and the western regions of China, and the eastern region has the highest carbon emission performance, followed by the central and the western regions. Then, the panel data Tobit regression model was employed to analyze the influencing factors of carbon emissions efficiency, and we found that scale economy, industrial structure, degree of opening up, foreign direct investment (FDI), energy intensity, government interference, ownership structure, and capital-labor ratio have different impacts on the carbon emission efficiency in different regions of China, which indicates different policies should be implemented in different regions.

2018 ◽  
Vol 10 (8) ◽  
pp. 2809 ◽  
Author(s):  
Weidong Chen ◽  
Ruoyu Yang

Based on provincial panel data from 2005 to 2016, this paper analyzes evolving temporal–spatial trends, spatial correlation and influencing factors of carbon emissions in China. The results show that there is a great heterogeneity in the evolving temporal–spatial trends of carbon emissions among provinces and regions in China, with the heterogeneity in eastern provinces most obvious. At the same time, there exists significant spatial correlation and agglomeration of carbon emissions in 30 provinces. It is found that the distribution characteristics of carbon emissions are affected by various economic and social factors based on the extended STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) model. Population pressure, affluence, energy intensity, industrial structure, urbanization level and investment in fixed assets can significantly promote the increase of carbon emissions. The technological level and government environmental supervision have significant inhibitory effects on carbon emissions, but foreign direct investment (FDI) has no significant impact. Therefore, it is necessary to strengthen environmental supervision and upgrade technology level to promote carbon emission reduction.


2015 ◽  
Vol 1092-1093 ◽  
pp. 1597-1600
Author(s):  
Zhong Hua Wang ◽  
Xin Ye Chen

The need to reduce carbon emission in Heilongjiang Province of China is urgent challenge facing sustainable development. This paper aims to make explicit the problem-solving of carbon emission to find low carbon emission ways. According to domestic and foreign literatures on estimating and calculating carbon emissions and by integrating calculation methods of carbon emissions, it was not possible to consider all of the many contributions to carbon emissions. Calculation model of carbon emissions suitable to this paper is selected. The carbon emissions of energy consumption in mining industry are estimated and calculated from 2005 to 2012, and the characteristics of carbon emission are analyzed at the provincial level. It makes the point that carbon emissions of energy consumption in mining industry can be reduced when we attempt to alter energy consumption structure, adjust industrial structure and improve energy utilization efficiency.


2018 ◽  
Vol 10 (7) ◽  
pp. 2458 ◽  
Author(s):  
Weidong Li ◽  
Xin Qi ◽  
Xiaojun Zhao

The impact of population structure on carbon emission has always been a key area of research in modern society. In this paper, we propose a new expanded STIRPAT model and panel co-integration method to analyze the relationship between population aging and carbon emission, based on the provincial panel data in China from 1999 to 2014. Empirical results show that there exists a significant inverted U-shaped curve between the population aging and carbon emission. There also exist regional discrepancies, where the impact of the population aging on carbon emission in the eastern region is significantly positive. By contrast, a negative relationship arises in the central and western regions. Finally, several suggestions for low carbon development are provided.


2021 ◽  
Author(s):  
Haiying Liu ◽  
zhiqun zhang

Abstract Against the background of energy shortages and severe air pollution, countries around the world are aware of the importance of energy conservation and emissions reduction; China is actively achieving emissions reduction targets. In this study, we use a symbolic regression to classify China's regions according to the degree of influencing factors, and calculate and analyze the inherent decoupling relationship between carbon emissions and economic growth in each region. Based on our results, we divided the 30 regions of the country into six categories according to the main influencing factors: GDP (13 regions), energy intensity (EI; 7 regions), industrial structure (IS; 3 regions), urbanization rate (UR; 3 regions), car ownership (CO; 2 regions), and household consumption level (HCL; 2 regions). Then, according to the order of the average carbon emissions in each region from high to low, these regions were further categorized as type-EI, type-UR, type-GDP, type-IS, type-CO, or type-HCL regions. The decoupling index of each region showed a downward trend; EI and GDP regions were the most notable contributors to emissions, based on which we provide policy recommendations.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3081 ◽  
Author(s):  
Zeng ◽  
Lu ◽  
Liu ◽  
Zhou ◽  
Hu

With the challenge to reach targets of carbon emission reduction at the regional level, it is necessary to analyze the regional differences and influencing factors on China’s carbon emission efficiency. Based on statistics from 2005 to 2015, carbon emission efficiency and the differences in 30 provinces of China were rated by the Modified Undesirable Epsilon-based measure (EBM) Data Envelopment Analysis (DEA) Model. Additionally, we further analyzed the influencing factors of carbon emission efficiency’s differences in the Tobit model. We found that the overall carbon emission efficiency was relatively low in China. The level of carbon emission efficiency is the highest in the East region, followed by the Central and West regions. As for the influencing factors, industrial structure, external development, and science and technology level had a significant positive relationship with carbon emission efficiency, whereas government intervention and energy intensity demonstrated a negative correlation with carbon emission efficiency. The contributions of this paper include two aspects. First, we used the Modified Undesirable EBM DEA Model, which is more accurate than traditional methods. Secondly, based on the data’s unit root testing and cointegration, the paper verified the influencing factors of carbon emission efficiency by the Tobit model, which avoids the spurious regression. Based on the results, we also provide several policy implications for policymakers to improve carbon emission efficiency in different regions.


Land ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 158 ◽  
Author(s):  
Qianru Chen ◽  
Hualin Xie

Cultivated land is closely related to national food security, rural economic development and social stability. The cultivated land pollution and carbon emissions caused by chemical fertilizers, pesticides, film residues, etc., in the process of cultivated land utilization pose a serious threat to the cultivated land ecosystem in China. The comprehensive analysis on the cultivated land green utilization efficiency (GUECL), its influencing factors, and optimization direction provides a valuable basis for the green utilization of cultivated land. Based on a panel data of 30 provinces (cities or districts) in China from 2001 to 2016, the GUECL in China under the constraints of pollution and carbon emissions was measured by using a super-efficient SBM-VRS (slack based model-variable return to scale) model. The influencing factors and optimization directions of the GUECL were analyzed through the Tobit model and slack values, respectively. The results show that the GUECL in China rose with fluctuations from 2001 to 2016. Since 2014, the eastern region has surpassed the western region and has become the region with the highest mean GUECL value. The room for resource conservation and pollution reduction varies in different regions of China. Farmers’ dependence on cultivated land and agricultural added value are positively related to the GUECL in China. Farmers’ occupational differentiation, agricultural machinery density, and agricultural disaster rate have had negative effects on the GUECL in China. The loss of the GUECL in China is mainly due to the redundancies of land input, pollution emission, and mechanical input. By analyzing these influencing factors and optimization directions, it is concluded that improving rural land transfer market and agricultural infrastructure construction, establishing a new agricultural technology extension system, and vigorously cultivating new professional farmers are the targeted measures to improve the GUECL.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Jing-min Wang ◽  
Yu-fang Shi ◽  
Xue Zhao ◽  
Xue-ting Zhang

Beijing-Tianjin-Hebei is a typical developed region in China. The development of economy has brought lots of carbon emissions. To explore an effective way to reduce carbon emissions, we applied the Logarithmic Mean Divisia Index (LMDI) model to find drivers behind carbon emission from 2003 to 2013. Results showed that, in Beijing, Tianjin, and Hebei, economic output was main contributor to carbon emissions. Then we utilized the decoupling model to comprehensively analyze the relationship between economic output and carbon emission. Based on the two-level model, results indicated the following: (1) Industry sector accounted for almost 80% of energy consumption in whole region. The reduced proportion of industrial GDP will directly reduce the carbon emissions. (2) The carbon factor for CO2/energy in whole region was higher than that of Beijing and Tianjin but lower than that of Hebei. The impact of energy structure on carbon emission depends largely on the proportion of coal in industry. (3) The energy intensity in whole region decreased from 0.79 in 2003 to 0.40 in 2013 (unit: tons of standard coal/ten thousand yuan), which was lower than national average. (4) The cumulative effects of industrial structure, energy structure, and energy intensity were negative, positive, and negative, respectively.


2013 ◽  
Vol 448-453 ◽  
pp. 4281-4284 ◽  
Author(s):  
Shao Bo Liu

Using IPCC methodology, the carbon emissions of Chinese Northeast Old Industrial Base is calculated, and the energy's synthesized impact on carbon emissions intensity is presented. The resulting shows that the carbon emissions in the three northeast provinces decreased 52.87% from 2000 to 2010, of which, Liaoning, Jilin and Heilongjiang are individually 60.09%, 45.47% and 54.14% lower. The implications are that the energy structure is one of the main factors in carbon emission in the Old Industrial Base of Northeast China, and its industrial structure is changing greatly due to energy consumption carbon emission. To adjust optimally the energy and industrial structure, and to develop the energy technology to promote energy utilization are recommended.


Author(s):  
Danting Lin ◽  
Rongzu Qiu ◽  
Xisheng Hu ◽  
Jiankai Wang ◽  
Lanyi Zhang ◽  
...  

China’s transportation industry has made rapid progress, which has led to a mass of carbon emissions. However, it is still unclear how the carbon emission from transport sector is punctuated by shifts in underlying drivers. This paper aims to examine the process of China’s carbon emissions from transport sector as well as its major driving forces during the period of 2000 to 2015 at the provincial level. We firstly estimate the carbon emissions from transport sector at the provincial level based on the fuel and electricity consumption using a top-down method. We find that the carbon emission per capita is steadily increasing across the nation, especially in the provinces of Chongqing and Inner Mongolia. However, the carbon emission intensity is decreasing in most provinces of China, except in Yunnan, Qinghai, Chongqing, Zhejiang, Heilongjiang, Jilin, Inner Mongolia, Henan and Anhui. We then quantify the effect of socio-economic factors and their regional variations on the carbon emissions using panel data model. The results show that the development of secondary industry is the most significant variable in both the entire nation level and the regional level, while the effects of the other variables vary across regions. Among these factors, population density is the main motivator of the increasing carbon emissions per capita from transport sector for both the whole nation and the western region, whereas the consumption level per capita of residents and the development of tertiary industry are the primary drivers of per capita carbon emissions for the eastern and central region.


Sign in / Sign up

Export Citation Format

Share Document