scholarly journals Optimizing Energy Consumption in Transportation: Literature Review, Insights, and Research Opportunities

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1115 ◽  
Author(s):  
Canan G. Corlu ◽  
Rocio de la Torre ◽  
Adrian Serrano-Hernandez ◽  
Angel A. Juan ◽  
Javier Faulin

From airplanes to electric vehicles and trains, modern transportation systems require large quantities of energy. These vast amounts of energy have to be produced somewhere—ideally by using sustainable sources—and then brought to the transportation system. Energy is a scarce and costly resource, which cannot always be produced from renewable sources. Therefore, it is critical to consume energy as efficiently as possible, that is, transportation activities need to be carried out with an optimal intake of energetic means. This paper reviews existing work on the optimization of energy consumption in the area of transportation, including road freight, passenger rail, maritime, and air transportation modes. The paper also analyzes how optimization methods—of both exact and approximate nature—have been used to deal with these energy-optimization problems. Finally, it provides insights and discusses open research opportunities regarding the use of new intelligent algorithms—combining metaheuristics with simulation and machine learning—to improve the efficiency of energy consumption in transportation.

Electricity ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 110-123
Author(s):  
Nicholas A. Speranza ◽  
Christopher J. Rave ◽  
Yong Pei

Due to the predicted rise of Unmanned Aircraft Systems (UAS) in commercial, civil, and military operations, there is a desire to make UASs more energy efficient so they can proliferate with ease of deployment and maximal life per charge. To address current limitations, a three-tiered approach is investigated to mitigate Unmanned Aerial Vehicle (UAV) hover time, reduce network datalink transmission to a ground station, and provide a real-time framework for Sense-and-Avoidance (SAA) target classification. An energy-efficient UAS architecture framework is presented, and a corresponding SAA prototype is developed using commercial hardware to validate the proposed architecture using an experimental methodology. The proposed architecture utilizes classical computer vision methods within the Detection Subsystem coupled with deeply learned Convolutional Neural Networks (CNN) within the Classification Subsystem. Real-time operations of three frames per second are realized enabling UAV hover time and associated energy consumption during SAA processing to be effectively eliminated. Additional energy improvements are not addressed in the scope of this work. Inference accuracy is improved by 19% over baseline COTS models and current non-adaptive, single-stage SAA architectures. Overall, by pushing SAA processing to the edge of the sensors, network offload transmissions and reductions in processing time and energy consumption are feasible and realistic in future battery-powered electric air transportation systems.


2020 ◽  
Vol 961 (7) ◽  
pp. 2-7
Author(s):  
A.V. Zubov ◽  
N.N. Eliseeva

The authors describe a software suite for determining tilt degrees of tower-type structures according to ground laser scanning indication. Defining the tilt of the pipe is carried out with a set of measured data through approximating the sections by circumferences. They are constructed using one of the simplest search engine optimization methods (evolutionary algorithm). Automatic filtering the scan of the current section from distorting data is performed by the method of assessing the quality of models constructed with that of least squares. The software was designed using Visual Basic for Applications. It contains several blocks (subprograms), with each of them performing a specific task. The developed complex enables obtaining operational data on the current state of the object with minimal user participation in the calculation process. The software suite is the result of practical implementing theoretical developments on the possibilities of using search methods at solving optimization problems in geodetic practice.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 225
Author(s):  
José García ◽  
Gino Astorga ◽  
Víctor Yepes

The optimization methods and, in particular, metaheuristics must be constantly improved to reduce execution times, improve the results, and thus be able to address broader instances. In particular, addressing combinatorial optimization problems is critical in the areas of operational research and engineering. In this work, a perturbation operator is proposed which uses the k-nearest neighbors technique, and this is studied with the aim of improving the diversification and intensification properties of metaheuristic algorithms in their binary version. Random operators are designed to study the contribution of the perturbation operator. To verify the proposal, large instances of the well-known set covering problem are studied. Box plots, convergence charts, and the Wilcoxon statistical test are used to determine the operator contribution. Furthermore, a comparison is made using metaheuristic techniques that use general binarization mechanisms such as transfer functions or db-scan as binarization methods. The results obtained indicate that the KNN perturbation operator improves significantly the results.


2021 ◽  
Vol 13 (15) ◽  
pp. 8670
Author(s):  
Xiwen Cui ◽  
Shaojun E ◽  
Dongxiao Niu ◽  
Dongyu Wang ◽  
Mingyu Li

In the process of economic development, the consumption of energy leads to environmental pollution. Environmental pollution affects the sustainable development of the world, and therefore energy consumption needs to be controlled. To help China formulate sustainable development policies, this paper proposes an energy consumption forecasting model based on an improved whale algorithm optimizing a linear support vector regression machine. The model combines multiple optimization methods to overcome the shortcomings of traditional models. This effectively improves the forecasting performance. The results of the projection of China’s future energy consumption data show that current policies are unable to achieve the carbon peak target. This result requires China to develop relevant policies, especially measures related to energy consumption factors, as soon as possible to ensure that China can achieve its peak carbon targets.


2021 ◽  
Vol 54 (4) ◽  
pp. 1-27
Author(s):  
Bekir Afsar ◽  
Kaisa Miettinen ◽  
Francisco Ruiz

Interactive methods are useful decision-making tools for multiobjective optimization problems, because they allow a decision-maker to provide her/his preference information iteratively in a comfortable way at the same time as (s)he learns about all different aspects of the problem. A wide variety of interactive methods is nowadays available, and they differ from each other in both technical aspects and type of preference information employed. Therefore, assessing the performance of interactive methods can help users to choose the most appropriate one for a given problem. This is a challenging task, which has been tackled from different perspectives in the published literature. We present a bibliographic survey of papers where interactive multiobjective optimization methods have been assessed (either individually or compared to other methods). Besides other features, we collect information about the type of decision-maker involved (utility or value functions, artificial or human decision-maker), the type of preference information provided, and aspects of interactive methods that were somehow measured. Based on the survey and on our own experiences, we identify a series of desirable properties of interactive methods that we believe should be assessed.


2014 ◽  
Vol 1 (4) ◽  
pp. 256-265 ◽  
Author(s):  
Hong Seok Park ◽  
Trung Thanh Nguyen

Abstract Energy efficiency is an essential consideration in sustainable manufacturing. This study presents the car fender-based injection molding process optimization that aims to resolve the trade-off between energy consumption and product quality at the same time in which process parameters are optimized variables. The process is specially optimized by applying response surface methodology and using nondominated sorting genetic algorithm II (NSGA II) in order to resolve multi-object optimization problems. To reduce computational cost and time in the problem-solving procedure, the combination of CAE-integration tools is employed. Based on the Pareto diagram, an appropriate solution is derived out to obtain optimal parameters. The optimization results show that the proposed approach can help effectively engineers in identifying optimal process parameters and achieving competitive advantages of energy consumption and product quality. In addition, the engineering analysis that can be employed to conduct holistic optimization of the injection molding process in order to increase energy efficiency and product quality was also mentioned in this paper.


2012 ◽  
Vol 215-216 ◽  
pp. 133-137
Author(s):  
Guo Shao Su ◽  
Yan Zhang ◽  
Zhen Xing Wu ◽  
Liu Bin Yan

Covariance matrix adaptation evolution strategy algorithm (CMA-ES) is a newly evolution algorithm. It has become a powerful tool for solving highly nonlinear multi-peak optimization problems. In many real-world optimization problems, the location of multiple optima is often required in a search space. In order to evaluate the solution, thousands of fitness function evaluations are involved that is a time consuming or expensive processes. Therefore, conventional stochastic optimization methods meet a special challenge for a very large number of problem function evaluations. Aiming to overcome the shortcoming of stochastic optimization methods in the high calculation cost, a truss optimal method based on CMA-ES algorithm is proposed and applied to solve the section and shape optimization problems of trusses. The study results show that the method is feasible and has the advantages of high accuracy, high efficiency and easy implementation.


2012 ◽  
Vol 24 (4) ◽  
pp. 1047-1084 ◽  
Author(s):  
Xiao-Tong Yuan ◽  
Shuicheng Yan

We investigate Newton-type optimization methods for solving piecewise linear systems (PLSs) with nondegenerate coefficient matrix. Such systems arise, for example, from the numerical solution of linear complementarity problem, which is useful to model several learning and optimization problems. In this letter, we propose an effective damped Newton method, PLS-DN, to find the exact (up to machine precision) solution of nondegenerate PLSs. PLS-DN exhibits provable semiiterative property, that is, the algorithm converges globally to the exact solution in a finite number of iterations. The rate of convergence is shown to be at least linear before termination. We emphasize the applications of our method in modeling, from a novel perspective of PLSs, some statistical learning problems such as box-constrained least squares, elitist Lasso (Kowalski & Torreesani, 2008 ), and support vector machines (Cortes & Vapnik, 1995 ). Numerical results on synthetic and benchmark data sets are presented to demonstrate the effectiveness and efficiency of PLS-DN on these problems.


2016 ◽  
Vol 2 (2) ◽  
pp. e1500445 ◽  
Author(s):  
Riccardo Gallotti ◽  
Mason A. Porter ◽  
Marc Barthelemy

Cities and their transportation systems become increasingly complex and multimodal as they grow, and it is natural to wonder whether it is possible to quantitatively characterize our difficulty navigating in them and whether such navigation exceeds our cognitive limits. A transition between different search strategies for navigating in metropolitan maps has been observed for large, complex metropolitan networks. This evidence suggests the existence of a limit associated with cognitive overload and caused by a large amount of information that needs to be processed. In this light, we analyzed the world’s 15 largest metropolitan networks and estimated the information limit for determining a trip in a transportation system to be on the order of 8 bits. Similar to the “Dunbar number,” which represents a limit to the size of an individual’s friendship circle, our cognitive limit suggests that maps should not consist of more than 250 connection points to be easily readable. We also show that including connections with other transportation modes dramatically increases the information needed to navigate in multilayer transportation networks. In large cities such as New York, Paris, and Tokyo, more than 80% of the trips are above the 8-bit limit. Multimodal transportation systems in large cities have thus already exceeded human cognitive limits and, consequently, the traditional view of navigation in cities has to be revised substantially.


Sign in / Sign up

Export Citation Format

Share Document