scholarly journals Real-Time Selective Harmonic Mitigation Technique for Power Converters Based on the Exchange Market Algorithm

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1659
Author(s):  
Abraham Marquez Alcaide ◽  
Jose I. Leon ◽  
Marta Laguna ◽  
Francisco Gonzalez-Rodriguez ◽  
Ramon Portillo ◽  
...  

Hand-in-hand with the smart-grid paradigm development, power converters used in high-power applications are facing important challenges related to efficiency and power quality. To overcome these issues, the pre-programmed Pulse-Width Modulation (PWM) methods have been extensively applied to reduce the harmonic distortion with very low power switching losses for high-power converters. Among the pre-programmed PWM techniques, Selective Harmonic Elimination (SHE) has been the prevailing solution, but recently, Selective Harmonic Mitigation (SHM) stands as a superior alternative to provide further control of the harmonic spectrum with similar losses. However, the large computational burden required by the SHM method to find a solution confines it as an off-line application, where the switching set valid solutions are pre-computed and stored in a memory. In this paper, for the first time, a real-time implementation of SHM using an off-the-shelf mid-range microcontroller is presented and tested. The Exchange Market Algorithm (EMA), initially focused on optimizing financial transactions, is considered and executed to achieve the SHM targets. The performance of the EMA-based SHM is presented showing experimental results considering a reduced number of switching angles applied to a specific three-level converter, but the method can be extrapolated to any other three-level converter topology.

2016 ◽  
Vol 78 (5-8) ◽  
Author(s):  
N.S.M. Nazar ◽  
S. Thanakodi ◽  
N.A. Othman ◽  
H.D.M. Hidzir ◽  
M.S. Mat

It has been accepted that conventional inverters have limitation dealing with high voltage and high power applications. Lately, multilevel inverters are popular for high power applications due to its improved harmonic profile and increased power ratings. There are various literatures regarding topology and control techniques of multilevel inverters. This paper presents the performance of two Flying Capacitor Multilevel Inverter (FCMI) topologies particularly a 3-level and 5-level multilevel inverters. Besides that, concept of the topologies and its modulation techniques were described. Sinusoidal pulse width modulation (SPWM) techniques were utilized in this paper as the topologies control strategy. Two control parameters, namely the amplitude modulation index, ma and the frequency modulation index, mfwere varied in order to control the output voltage of the inverters. The model and simulation study were carried out using Matlab/Simulink software. Analyses on the performance of the two topologies were based on the fundamental voltage, output voltage waveform, output harmonic spectrum and total harmonic distortion (THD). It’s found that the five level FCMI have shown better performance in terms of THD compared to the three level FCMI in all conditions of varied ma and mf. Based on the study also, five level FCMI shows a better voltage output waveform; close to a sinusoidal waveform compared to the three level FCMI.


2021 ◽  
Vol 23 (2) ◽  
pp. 131-136
Author(s):  
Aneel Kumar Maheshwari ◽  
Mukhtiar Ahmed Mahar ◽  
Abdul Sattar Larik ◽  
Abdul Hameed Soomro

The paper introduces the cascaded H-Bridge multi-level inverter with single-phase arrangement connected series with full-bridge inverter and CHBMLI configuration integrated with Double level circuit is proposed to reduce the harmonic distortion to get high power quality. In the proposed configuration, a half-bridge inverter has been implemented to increase the output voltage waveform nearly twice as compared with the conventional Cascaded H-Bridge MLI. For high Power quality, the output voltage waveform with the reference of sinusoidal, the phase opposition disposition carrier arrangement has been utilized in PWM for producing gate pulse of switches. The high waveform of output voltage achieved with the less no of switches, less % THD distortion, less conduction and switching losses. The purposed symmetrical model of CHBMLI is successfully verified using MATLAB based on simulation with DLC configuration.


Author(s):  
Chinnapettai Ramalingam Balamurugan ◽  
S.P. Natarajan ◽  
T.S. Anandhi ◽  
B. Shanthi

<p>Depending on the number of levels in output voltage, inverters can be divided into two categories: two level inverter and Multi Level Inverters (MLIs). An inverter topology for high voltage and high power applications that seems to be gaining interest is the MLI. In high power and high voltage applications, the two level inverters have some limitations in operating at high frequency mainly due to switching losses and constraints of device rating.In this paper, a three phase H + type FCMLI (Flying Capacitor MLI) using sinusoidal reference, third harmonic injection reference, 60 degree reference and stepped wave reference are initially developed using SIMULINK and then implemented in real time environment using dSPACE. In H-type FCMLI with R-load it is inferred that bipolar COPWM-C provides output with relatively low distortion for 60 degree reference and bipolar COPWM-C strategy is found to perform better since it provides relatively higher fundamental RMS output voltage for THI reference. The five level output voltages of the chosen MLIs obtained using the MATLAB and dSPACE based PWM (Pulse Width Modulation) strategies and the corresponding %THD (Total Harmonic Distortion), V<sub>RMS</sub> (fundamental), CF (Crest Factor) and FF (Form Factor) are presented and analyzed.</p>


In today’s era, reliable and good quality power is an essential requirement in industry, which can be supplied by inverters at medium and high power. Most of the appliances in the industry require high power or medium power for their operation. Power electronics devices such as inverters work on medium voltage and high power and are suitable for industrial applications and renewable particularly Photovoltaic (PV) integration. Multilevel inverters are more superior to conventional inverters because of lower harmonics and switching losses, but as the number of levels increases, complexity also increases. Therefore, maintaining the harmonics at lower level and lesser complexity of multilevel inverters is a challenge for researchers. In this research paper, a novel approach for implementation of seven level cascaded H- bridge configuration of multilevel inverter using direct current source and photovoltaic panels has been demonstrated. The basic working principle of seven level cascaded hybrid bridge inverter, pulse width modulation techniques and total harmonic distortion are explained through simulations in Matlab and Xilinx 14.3 software and the same is experimentally validated through FPGA controller based Spartan 6. The designed seven level inverter results in lower total harmonic distortion with lesser complexity when used to connect PV panels.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1340
Author(s):  
Yih-Her Yan ◽  
Hung-Liang Cheng ◽  
Chun-An Cheng ◽  
Yong-Nong Chang ◽  
Zong-Xun Wu

A novel single-switch single-stage high power factor LED driver is proposed by integrating a flyback converter, a buck–boost converter and a current balance circuit. Only an active switch and a corresponding control circuit are used. The LED power can be adjusted by the control scheme of pulse–width modulation (PWM). The flyback converter performs the function of power factor correction (PFC), which is operated at discontinuous-current mode (DCM) to achieve unity power factor and low total current harmonic distortion (THDi). The buck–boost converter regulates the dc-link voltage to obtain smooth dc voltage for the LED. The current–balance circuit applies the principle of ampere-second balance of capacitors to obtain equal current in each LED string. The steady-state analyses for different operation modes is provided, and the mathematical equations for designing component parameters are conducted. Finally, a 90-W prototype circuit with three LED strings was built and tested. Experimental results show that the current in each LED string is indeed consistent. High power factor and low THDi can be achieved. LED power is regulated from 100% to 25% rated power. Satisfactory performance has proved the feasibility of this circuit.


2007 ◽  
Vol 4 (2) ◽  
pp. 171-187 ◽  
Author(s):  
S. Jeevananthan ◽  
R. Nandhakumar ◽  
P. Dananjayan

This paper deals with a novel natural sampled pulse width modulation (PWM) switching strategy for voltage source inverter through carrier modification. The proposed inverted sine carrier PWM (ISCPWM) method, which uses the conventional sinusoidal reference signal and an inverted sine carrier, has a better spectral quality and a higher fundamental component compared to the conventional sinusoidal PWM (SPWM) without any pulse dropping. The ISCPWM strategy enhances the fundamental output voltage particularly at lower modulation index ranges while keeping the total harmonic distortion (THD) lower without involving changes in device switching losses. The presented mathematical preliminaries for both SPWM and ISCPWM give a conceptual understanding and a comparison of the strategies. The detailed comparison of the harmonic content and fundamental component of the ISCPWM output for different values of modulation index with the results obtained for the SPWM is also presented. Finally, the proposed modulator has been implemented in field programmable gate array (FPGA- Xilinx Spartan 3) and tested with the proto-type inverter.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1149-1154

A inverter is basically a device that usually converts DC to AC voltage without causing any power loss, applicable to only low to medium voltage applications. But in case of medium to high power applications, it has demerits like high switching losses, reduced cost and low efficiency. To overcome these demerits a Multilevel inverter applicable to high voltage and high-power applications which have low total harmonic distortion (THD) is introduced. This paper is mainly focused on seven-level inverter with five switches and four dc sources. with low total harmonic distortion, less switching loss without adding any complexity to the circuit. The switching topology is integrated with various SPWM techniques like Phase Disposition (PD), Phase Opposition Disposition (POD) and Anti Phase Opposition Disposition (APOD). For better performance of the inverter above three PWM techniques will be compared and analyzed to find the low THD configuration. The simulation of switching topology is done by MATLAB/Simulink.


2011 ◽  
Vol 383-390 ◽  
pp. 1077-1083
Author(s):  
Run Hua Liu ◽  
Gang Wang

The paper presents the inverter method which based on cascade multilevel inverter and MOSFET-assisted soft-switching of IGBT and modulation strategy against the double requirement of high-power inverter and high frequency. The method can effectively improve the output voltage, reduce harmonic distortion and switching losses, improve the switching frequency and meet the double requirement of the high-power inverter and high frequency. The method proved to be feasible by simulation and experiment.


Sign in / Sign up

Export Citation Format

Share Document