scholarly journals Promoting Energy Efficiency in the Built Environment through Adapted BIM Training and Education

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2308
Author(s):  
Ali Alhamami ◽  
Ioan Petri ◽  
Yacine Rezgui ◽  
Sylvain Kubicki

The development of new climate change policies has increased the motivation to reduce energy use in buildings, as reflected by a stringent regulatory landscape. The construction industry is expected to adopt new methods and strategies to address such requirements, focusing primarily on reducing energy demand, improving process efficiency and reducing carbon emissions. However, the realisation of these emerging requirements has been constrained by the highly fragmented nature of the industry, which is often portrayed as involving a culture of adversarial relationships and risk avoidance, which is exacerbated by a linear workflow. Recurring problems include low process efficiency, delays and construction waste. Building information modelling (BIM) provides a unique opportunity to enhance building energy efficiency (EE) and to open new pathways towards a more digitalised industry and society. BIM has the potential to reduce (a) waste and carbon emissions, (b) the endemic performance gap, (c) in-use energy and (d) the total lifecycle impact. BIM also targets to improve the whole supply chain related to the design, construction as well as the management and use of the facility. However, the construction workforce is required to upgrade their skills and competencies to satisfy new requirements for delivering BIM for EE. Currently, there is a real gap between the industry expectations for employees and current training and educational programmes. There is also a set of new requirements and expectations that the construction industry needs to identify and address in order to deliver more informed BIM for EE practices. This paper provides an in-depth analysis and gap identification pertaining to the skills and competencies involved in BIM training for EE. Consultations and interviews have been used as a method to collect requirements, and a portfolio of use cases have been created and analysed to better understand existing BIM practices and to determine current limitations and gaps in BIM training. The results show that BIM can contribute to the digitalisation of the construction industry in Europe with adapted BIM training and educational programmes to deliver more informed and adapted energy strategies.

2020 ◽  
Vol 12 (19) ◽  
pp. 7961 ◽  
Author(s):  
Shady Attia

Climate responsive design can amplify the positive environmental effects necessary for human habitation and constructively engage and reduce the energy use of existing buildings. This paper aims to assess the role of the thermal adaptation design strategy on thermal comfort perception, occupant behavior, and building energy use in twelve high-performance Belgian households. Thermal adaptation involves thermal zoning and behavioral adaptation to achieve thermal comfort and reduce energy use in homes. Based on quantitative and qualitative fieldwork and in-depth interviews conducted in Brussels, the paper provides insights on the impact of using mechanical systems in twelve newly renovated nearly- and net-zero energy households. The article calls for embracing thermal adaptation as a crucial design principle in future energy efficiency standards and codes. Results confirm the rebound effect in nearly zero energy buildings and the limitation of the current building energy efficiency standards. The paper offers a fresh perspective to the field of building energy efficiency that will appeal to researchers and architects, as well as policymakers.


Author(s):  
Begum Sertyesilisik

Green innovations are important in enhancing sustainability performance of the industries and of their outputs. They can influence the carbon emissions, energy efficiency of the industries affecting global green trade, and energy policies. Construction industry is one of the main industries contributing to the global economy and sustainable development. It has, however, bigger environmental footprint than majority of the other industries. Green innovations can contribute to the reduction in the environmental footprint of the construction industry. For this reason, green innovation in the construction industry needs to be supported by the effective policies. This chapter aims to introduce and investigate the political economy of the green innovations in the construction industry. This chapter emphasizes that the effectiveness of the green innovations in the construction industry can be fostered by effective political economy and strategies.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3804 ◽  
Author(s):  
Chia-Nan Wang ◽  
Thi-Duong Nguyen ◽  
Min-Chun Yu

Despite the many benefits that energy consumption brings to the economy, consuming energy also leads nations to expend more resources on environmental pollution. Therefore, energy efficiency has been proposed as a solution to improve national economic competitiveness and sustainability. However, the growth in energy demand is accelerating while policy efforts to boost energy efficiency are slowing. To solve this problem, the efficiency gains in countries where energy consumption efficiency is of the greatest concern such as China, India, the United States, and Europe, especially, emerging economies, is central. Additionally, governments must take greater policy actions. Therefore, this paper studied 25 countries from Asia, the Americas, and Europe to develop a method combining the grey method (GM) and data envelopment analysis (DEA) slack-based measure model (SMB) to measure and forecast the energy efficiency, so that detailed energy efficiency evaluation can be made from the past to the future; moreover, this method can be extended to more countries around the world. The results of this study reveal that European countries have a higher energy efficiency than countries in Americas (except the United States) and Asian countries. Our findings also show that an excess of total energy consumption is the main reason causing the energy inefficiency in most countries. This study contributes to policymaking and strategy makers by sharing the understanding of the status of energy efficiency and providing insights for the future.


2016 ◽  
Vol 9 (1) ◽  
pp. 229
Author(s):  
Valerie Patrick ◽  
Leslie A. Billhymer ◽  
William Shephard

The U.S. Department of Energy [DOE] established the Consortium for Building Energy Innovation [CBEI] to address commercial building energy efficiency as an innovation cluster, where the regional market context (Note 1) guides the research agenda for market transformation (Porter, 2001). CBEI develops content to support Advanced Energy Retrofits (AERs), a retrofit which results in 50% or greater reduction in building energy use, in small- and medium- sized commercial buildings (less than 250 000 ft<sup>2</sup>). The challenge is collecting input for a market with many stakeholders so that a strategy emerges to implement AERs. This research applies systems and complexity theories to develop a strategy to promote the emergence of AERs in this market incorporating multiple stakeholder perspectives (Note 2).


2014 ◽  
Vol 899 ◽  
pp. 62-65 ◽  
Author(s):  
Rastislav Ingeli ◽  
Boris Vavrovič ◽  
Miroslav Čekon

Energy demand reduction in buildings is an important measure to achieve climate change mitigation. It is essential to minimize heat losses in designing phase in accordance of building energy efficiency. For building energy efficiency in a mild climate zone, a large part of the heating demand is caused by transmission losses through the building envelope. Building envelopes with high thermal resistance are typical for low-energy buildings in general. In this sense thermal bridges impact increases by using of greater thickness of thermal insulation. This paper is focused on thermal bridges minimizing through typical system details in buildings. The impact of thermal bridges was studied by comparative calculations for a case study of building with different amounts of thermal insulation. The calculated results represent a percentage distribution of heat loss through typical building components in correlation of various thicknesses of their thermal insulations.


2015 ◽  
Vol 26 (3) ◽  
pp. 407-422 ◽  
Author(s):  
Thomas Weyman-Jones ◽  
Júlia Mendonça Boucinha ◽  
Catarina Feteira Inácio

Purpose – There is a great interest from the European Union in measuring the efficiency of energy use in households, and this is an area where EDP has done research in both data collection and methodology. This paper reports on a survey of electric energy use in Portuguese households, and reviews and extends the analysis of how efficiently households use electrical energy. The purpose of this paper is to evaluate household electrical energy efficiency in different regions using econometric analysis of the survey data. In addition, the same methodology was applied to a time-series data set, to evaluate recent developments in energy efficiency. Design/methodology/approach – The paper describes the application to Portuguese households of a new approach to evaluate energy efficiency, developed by Filippini and Hunt (2011, 2012) in which an econometric energy demand model was estimated to control for exogenous variables determining energy demand. The variation in energy efficiency over time and space could then be estimated by applying econometric efficiency analysis to determine the variation in energy efficiency. Findings – The results obtained allowed the identification of priority regions and consumer bands to reduce inefficiency in electricity consumption. The time-series data set shows that the expected electricity savings from the efficiency measures recently introduced by official authorities were fully realized. Research limitations/implications – This approach gives some guidance on how to introduce electricity saving measures in a more cost effective way. Originality/value – This paper outlines a new procedure for developing useful tools for modelling energy efficiency.


2018 ◽  
Vol 3 (10) ◽  
pp. 191-202
Author(s):  
Mohd Najib Mohd Salleh ◽  
Mohd Zin Kandar ◽  
Siti Rasidah Md Sakip

Energy demand in buildings can reduce by improving energy efficiency. MS1525 has recommended that energy efficiency for Non-Residential Buildings in Malaysia to be not more than 135kWh/m²/year. A school building is a non-residential building and has major social responsibilities. Based on the theory of building energy-efficiency, energy efficiency can be achieved through three main factors: a) design of buildings; b) design of services; and c) user behavior. This study aims to investigate the user perceptions in High-Performance Schools. Keywords: User perception; building energy index; building energy efficiency; school building. eISSN 2514-7528 © 2018. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open-access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI:https://doi.org/10.21834/jabs.v3i10.318  


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4237
Author(s):  
Rosaliya Kurian ◽  
Kishor Sitaram Kulkarni ◽  
Prasanna Venkatesan Ramani ◽  
Chandan Swaroop Meena ◽  
Ashok Kumar ◽  
...  

In recent years Asian Nations showed concern over the Life Cycle Assessment (LCA) of their civil infrastructure. This study presents a contextual investigation of a residential apartment complex in the territory of the southern part of India. The LCA is performed through Building Information Modelling (BIM) software embedded with Environmental Product Declarations (EPDs) of materials utilized in construction, transportation of materials and operational energy use throughout the building lifecycle. The results of the study illustrate that cement is the material that most contributes to carbon emissions among the other materials looked at in this study. The operational stage contributed the highest amount of carbon emissions. This study emphasizes variation in the LCA results based on the selection of a combination of definite software-database combinations and manual-database computations used. For this, three LCA databases were adopted (GaBi database and ecoinvent databases through One Click LCA software), and the ICE database was used for manual calculations. The ICE database showed realistic value comparing the GaBi and ecoinvent databases. The findings of this study are valuable for the policymakers and practitioners to accomplish optimization of Greenhouse Gas (GHG) emissions over the building life cycle.


Author(s):  
NIMA NOROUZI

Objective: The electricity-to-hydrogen technology can convert surplus renewable energy electric energy into chemical energy. Hydrogen plays an important role in transportation, power generation, and other fields. Therefore, developing electrochemical (P2X) technology for renewable energy consumption effectively solves renewable energy curtailment. Methods: The four aspects of market scale, technical route, energy conversion efficiency, and demonstration project progress are reviewed, and the energy efficiency of the four electrochemical technologies is compared, Power consumption, marginal electricity price, equivalent output, and market share five major technical and economic indicators. To analyze the strengths, weaknesses, opportunities, and threats of P2X in China, a literature review survey was conducted, relying on recent two-decade publications from four main publishers: Scopus, Springer, Wiley, and Taylor and Francis. Keywords were selected from the first-hand references based on their impact on P2X or related topics listed in the literature databases. The keywords as Power to X, Power to chemicals, PtX, and P2X were chosen according to their actual involvement or keen interest in P2X projects. Results: The research results based on the low-temperature electrolysis technology route show that the comprehensive energy efficiency of the electricity-to-methane and electricity-to-gasoline technologies is higher (50%); the electricity-to-gasoline technology is the most economical (marginal electricity price is 0.37 yuan/kWh), but the synthesis process requires carbon monoxide and carbon emissions, And the technical risk is high; the promotion of electricity to ammonia will have the greatest impact on the market (17.18%). Reducing coal consumption by about 22.85 million tons and the environmental protection significance of electricity-to-ammonia conversion (reducing carbon emissions by about 39.1 million tons) are two important directions for future electrochemical technology. Conclusion: Facing the development of P2X technology in the future, the plan and economics of the high-temperature electrical and chemical technology route based on high-temperature solid oxides were preliminary discussed and prospected.


Sign in / Sign up

Export Citation Format

Share Document