scholarly journals Exploring the Biomethane Potential of Different Industrial Hemp (Cannabis sativa L.) Biomass Residues

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3361
Author(s):  
Silvio Matassa ◽  
Giovanni Esposito ◽  
Francesco Pirozzi ◽  
Stefano Papirio

Industrial hemp stands out as a promising candidate for clean and sustainable biomass-to-bioenergy systems due to its multipurpose, high biomass yield and resource efficiency features. In this study, different hemp biomass residues (HBRs) were evaluated as a potential feedstock for renewable biomethane production through anaerobic digestion (AD). The biochemical methane potential (BMP) of the raw and pretreated fibers, stalks, hurds, leaves and inflorescences was investigated by means of batch anaerobic tests. The highest BMP was obtained with the raw fibers (i.e., 422 ± 20 mL CH4·g VS−1), while hemp hurds (unretted), making up more than half of the whole hemp plant dry weight, showed a lower BMP value of 239 ± 10 mL CH4·g VS−1. The alkali pretreatment of unretted hurds and mechanical grinding of retted hurds effectively enhanced the BMP of both substrates by 15.9%. The mix of leaves and inflorescences and inflorescences alone showed low BMP values (i.e., 118 ± 8 and 26 ± 5 mL CH4·g VS−1, respectively) and a prolonged inhibition of methanogenesis. The latter could be overcome through NaOH pretreatment in the mix of leaves and inflorescences (+28.5% methane production).

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2820 ◽  
Author(s):  
Stefano Papirio ◽  
Silvio Matassa ◽  
Francesco Pirozzi ◽  
Giovanni Esposito

Cheese whey (CW) and hemp hurds (HH) represent typically overabundant biowastes of food and agricultural production, and their circular management is crucial to improve both sustainability and profitability of the agri-food chain. By combining experimental biochemical methane potential (BMP) tests and literature data, the techno-economic aspects of a possible future bioenergy valorization of CW and HH through anaerobic digestion (AD) and co- digestion (coAD) were analyzed. Along the 42-days, BMP assays, CW, and HH alone rendered BMP values of 446 ± 66 and 242 ± 13 mL CH4·g VS−1, respectively. The application of coAD with CW and HH at a 70:30 ratio allowed to enhance the biomethane production by 10.7%, as compared to the corresponding calculated value. In terms of economic profitability, the valorization of HH as biomethane in a dual-purpose hemp cultivation could potentially enable net profits of up to 3929 €·ha−1, which could rise to 6124 €·ha−1 in case of coAD with CW. Finally, by projecting the biomethane potential from current and future available CW and HH residues in the national context of Italy, a total biomethane yield of up to 296 MNm3·y−1 could be attained, offering interesting perspectives for the sustainability of key sectors such as transportation.


Author(s):  
Antigolena FOLINA ◽  
Ioanna KAKABOUKI ◽  
Evangelia TOURKOCHORITI ◽  
Ioannis ROUSSIS ◽  
Harry PATEROULAKIS ◽  
...  

In order to define the finest cultivation practices for two of the most commercial hemp cultivars (‘Fedora 23’ and ‘Futura 75’) under the Mediterranean climate, the treatment of topping was applied in hemp crop in Central Greece. The object of the study was to assess if topping can increase the cannabidiol (CBD) production. In addition, the growth of the two cultivars was also investigated. Our results showed that the treatment of topping and cultivar affected the CBD content. The inflorescence compactness index and the number of nodes were affected by cultivar and topping. The number of inflorescences on secondary shoots was affected only by topping. The leaf area was affected by the interaction of cultivar and topping. The maximum height was recorded in un-topped Futura 75 plants, while the highest fresh and dry weight were found in topped Futura 75 plants. The total inflorescence dry matter was higher in topped plants.


Author(s):  
Zuhaib Siddiqui ◽  
N.J. Horan ◽  
Kofi Anaman

Biomethane production from processed industrial food waste (IFW) in admixture with sewage sludge (primary and waste activated sludge: PS and WAS) was evaluated at a range of C:N ratios using a standard biochemical methane potential (BMP) test. IFW alone had a C:N of 30 whereas for WAS it was 5.4 and thus the C:N ratio of the blends fell in that range. Increasing the IFW content in mix improves the methane potential by increasing both the cumulative biogas production and the rate of methane production. Optimum methane yield 239 mL/g VSremoved occurred at a C:N ratio of 15 which was achieved with a blend containing 11 percent (w/w) IFW. As the fraction of IFW in the blend increased, volatile solids (VS) destruction was increased and this led to a reduction in methane yield and amount of production. The highest destruction of volatile solids of 93 percent was achieved at C:N of 20 followed by C:N 30 and 15. A shortened BMP test is adequate for evaluating optimum admixtures.


Author(s):  
Giovanni Dolci ◽  
Arianna Catenacci ◽  
Francesca Malpei ◽  
Mario Grosso

Abstract Purpose The most abundant among the separately collected waste materials in Italy is food waste. This research aims to evaluate the influence of the type of collection bag on the food waste management chain. In Italy, the food waste collection is mainly based on bioplastic bags. As an alternative, a new type of recycled paper bag shows potential advantages. Methods The two types of collection bag were compared evaluating the weight loss of food waste during the household storage, by means of an experimental assessment simulating the domestic dynamic bag filling. Moreover, the biomethane production of bags under anaerobic conditions was measured at the lab-scale level with Biochemical Methane Potential (BMP) tests. Results During the household storage, the breathable fabric of the paper allows for higher weight losses, ranging on average between + 29 and + 44% compared to bioplastic. BMP tests, carried out under different conditions (temperature, inoculum), showed a 2–14 times higher generation of methane by paper bags compared to bioplastic bags, when referred to 1 kg of inserted food waste. Conclusions Collecting the food waste inside paper bags shows advantages compared to the use of bioplastic bags. First, the waste collection is benefitted thanks to the lower weight of material to be transported to treatment plants, leading also to the possibility of decreasing the collection frequency. Moreover, paper resulted more compatible than bioplastic with the anaerobic digestion treatment, which is currently rapidly increasing as a food waste management option. Graphic Abstract


2021 ◽  
Author(s):  
Matthew S. Johnson ◽  
Jason G. Wallace

High consumer demand for cannabidiol (CBD) has made industrial hemp (Cannabis sativa) an extremely high-value crop. However, high demand has resulted in the industry developing faster than the research, resulting in the sale of many hemp accessions with inconsistent performance and chemical profiles. To determine the genetic and phenotypic consistency in available CBD hemp varieties, we obtained seed or clones from 22 different named accessions. Genotypes (~48,000 SNPs) and chemical profiles (% CBD and THC by dry weight) were determined for up to 8 plants per accession. Many accessions--including several with the same name--showed little consistency either genetically or chemically. Most seed-grown accessions deviated significantly from their purported levels of CBD and THC based on the supplied certificates of analysis. Several also showed evidence of an active tetrahydrocannabinolic acid (THCa) synthase gene, leading to unacceptably high levels of THC in female flowers. We conclude that the current market for CBD-hemp varieties is highly unreliable, making many purchases risky for growers. We suggest options for addressing these issues, such using unique names and developing seed and plant certification programs to ensure the availability of high-quality, verified planting materials.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 372 ◽  
Author(s):  
Lisa Burgel ◽  
Jens Hartung ◽  
Annegret Pflugfelder ◽  
Simone Graeff-Hönninger

The medicinal use of cannabinoids renewed the interest in industrial hemp (Cannabis sativa L.). The aim of this study was to evaluate the impact of growth stage and biomass fractions of seven industrial hemp genotypes. The study focused on biomass yield, content of cannabidiolic acid/cannabidiol (CBDA/CBD), cannabigerolic acid/cannabigerol (CBGA/CBG), and tetrahydrocannabinolic acid (THCA). The experiment was conducted in 2017 and 2018. The biomass samples were taken at the vegetative (S1), bud (S2), full-flowering (S3) and seed maturity stage (S4). Plants were fractionated into inflorescence, upper and lower leaves. The average inflorescence dry yield of genotypes Futura75, Fédora17, Félina32 and Ferimon ranged between 257.28 g m−2 to 442.00 g m−2, resulting in a maximum yield of CBDA at S4, with 4568.26 mg m−2, 6011.20 mg m−2, 4975.60 mg m−2 and 1929.60 mg m−2, respectively. CBGA was exclusively found in genotype Santhica27, with a maximum CBGA yield of 5721.77 mg m−2 in inflorescence at growth stage S4 and a dry weight yield of 408.99 g m−2. Although these industrial hemp genotypes are mainly cultivated for fibre and seed production, however, cannabinoids offer an additional value. For an optimized harvest result, yield of extractable material and overall yield of cannabinoids must be considered.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1221
Author(s):  
Kanyarat Saritpongteeraka ◽  
Jutawan Kaewsung ◽  
Boonya Charnnok ◽  
Sumate Chaiprapat

This study investigates the effects of convective hydrothermal pretreatment (CHTP) compared to microwave pretreatment (MWP) on the anaerobic digestion of hybrid Napier grass for biomethane production. For rapid estimation of methane yield (YCH4), enzymatic hydrolyzability (EH), whose test lasts only 2 days was used as a surrogate parameter instead of the biochemical methane potential (BMP) assay that normally takes 45–60 days. The relationship between EH and BMP was successfully modeled with satisfactory accuracy (R2 = 0.9810). From CHTP results, quadratic regression characterised by p < 0.0001 and R2 = 0.8364 shows that YCH4 increase was clearly sensitive to detention time at all CHTP temperatures. The maximal YCH4 achieved of 301.5 ± 3.0 mL CH4/gVSadd was 53.2% higher than the control. Then, MWP was employed at various power levels and microwave exposure times. Changes in lignocellulosic structure by Fourier-transform infrared spectroscopy (FTIR) and energy balance demonstrate that MWP caused more damage to plant cells, which proved more effective than CHTP. In the best conditions, approximately 50% of energy was needed for MWP to achieve the equivalent improvement in YCH4. However, CHTP is a more suitable option since waste heat, i.e., from a biogas CHP (combined heat and power) unit, could be used, as opposed to the electricity required for MWP.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 931
Author(s):  
Abumalé Cruz-Salomón ◽  
Edna Ríos-Valdovinos ◽  
Francisco Pola-Albores ◽  
Selene Lagunas-Rivera ◽  
Rosa Isela Cruz-Rodríguez ◽  
...  

Cheese whey wastewater (CWW) is the major by-product of the dairy industry. CWW is produced in large quantities, has varied characteristics and is usually disposed of. The disposal of CWW causes a negative impact on the environment of different agroindustrial areas due to the physic-chemical composition that significantly increases its high organic load and nutrients. For this reason, the aim of this work was to carry out an evaluation of the anaerobic treatability of an Expanded Granular Sludge Bed (EGSB) bioreactor as a new sustainable alternative for treatment of these effluents with bioenergy production. In this study, the bioreactor was operated under stable conditions (i.e., buffer index of 0.23 ± 0.1, pH 7.22 ± 0.4 and temperature 26.6 ± 1.4 °C) for 201 days. During evaluation the hydraulic retention time (HRT) was 6 and 8 days, and it was buffered with NaHCO3. At these conditions, the COD removal rate and biochemical methane potential (BMP) were 90, 92%; and 334, 328 mLCH4/gCOD, respectively. The evidence found in this study highlighted that the CWW is a viable substrate to be treated in the EGSB bioreactor as long as it keeps buffered. Furthermore, the process to treat the CWW in an EGSB bioreactor can be a sustainable alternative to simultaneously solve the environmental pollution that this agro-industry confronts and produce renewable and environmentally-friendly bioenergy.


2018 ◽  
Vol 46 (1) ◽  
pp. 197-201 ◽  
Author(s):  
Panayiota PAPASTYLIANOU ◽  
Ioanna KAKABOUKI ◽  
Ilias TRAVLOS

Fibre hemp is grown for a multitude of end products derived from its cannabinoids, seed, fibre and wooden core. A key factor that influences the quantity and quality of the production of hemp is nitrogen fertilization. The aim of this study was to determine the response of five well-adapted industrial hemp cultivars to different nitrogen fertilization rates during the 2016 growing season. The experiment was laid out in a split-plot design with two replicates, five main plots (hemp cultivars: ‘Bialobrzeskie’, ‘Tygra’, ‘Felina 32’, ‘Sanhtica 27’, ‘Futura 75’) and sub-plots [fertilization treatments: control (N0), fertilizer 46-0-0 at 120 kg ha-1 (N1), 180 kg ha-1 (N2), 240 kg ha-1 (N3)]. For the computation of height, biomass yield, stem dry weight, length and weight of the inflorescences and mean seed weight, 10 plants were randomly selected in each plot. In general, increasing N fertilization rate positively impacts hemp biomass yield, stem dry weight, plant height, and inflorescence indices. Biomass yield, stem dry weight and inflorescence weight increased by 37.3%, 48.2% and 16%, respectively, with the application of 240 kg N ha-1 when compared with the unfertilized control. Plant height and inflorescence length increased from 1.66 to 1.76 m and from 66.2 to 82.9 cm, respectively, with the application of the higher N rate compared with the control, while there were no significant differences between the fertilization treatments for mean seed weight. The varieties ‘Tygra’ and ‘Futura 75’ showed the highest values for all the measurement characters. Our results indicate that hemp responded well to the addition of N fertilizer.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
John J. Coleman

Abstract In 2014, Congress removed industrial hemp with a concentration of ≥0.3% tetrahydrocannabinol (THC) dry weight from the definition of marijuana in the federal Controlled Substances Act (CSA). Hemp production was authorized in a limited pilot program until 2018, when Congress passed the Agricultural Improvement Act (Farm Bill) that expanded the program to anyone licensed to produce hemp by the U.S. Department of Agriculture (USDA) or by a USDA-approved State or Indian tribe. Hemp’s greatest value is in two of its 80-plus molecules: cannabidiol (CBD) and THC. These molecules, present in all forms of Cannabis sativa L. (cannabis), including hemp, have medicinal and recreational uses. By removing hemp from the CSA, the Farm Bill altered the legal status of hemp’s extracts, including CBD and THC. In 2018, Epidiolex®, the world’s first and only CBD-based medicine, was approved in the U.S. The drug was placed in Schedule V of the CSA to comply with an international drug treaty requiring control of cannabis and all its extracts. In April 2020, Epidiolex was removed from the CSA schedules. This occurred, according to the Drug Enforcement Administration (DEA), because with a THC content below 0.3%, Epidiolex no longer met the Farm Bill’s criteria as a controlled substance. This review discusses the Farm Bill’s hemp provisions and how they have affected the legal status of hemp derivatives CBD and THC. The review also discusses a loophole in the Farm Bill that decriminalizes the production of marijuana by negligent hemp farmers. In passing, we discuss how lobbying by the hemp/CBD industry influenced passage of the Farm Bill.


Sign in / Sign up

Export Citation Format

Share Document