scholarly journals High Performance Electric Vehicle Powertrain Modeling, Simulation and Validation

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1493
Author(s):  
Feyijimi Adegbohun ◽  
Annette von Jouanne ◽  
Ben Phillips ◽  
Emmanuel Agamloh ◽  
Alex Yokochi

Accurate electric vehicle (EV) powertrain modeling, simulation and validation is paramount for critical design and control decisions in high performance vehicle designs. Described in this paper is a methodology for the design and development of EV powertrain through modeling, simulation and validation on a real-world vehicle system with detailed analysis of the results. Although simulation of EV powertrains in software simulation environments plays a significant role in the design and development of EVs, validating these models on the real-world vehicle systems plays an equally important role in improving the overall vehicle reliability, safety and performance. This modeling approach leverages the use of MATLAB/Simulink software for the modeling and simulation of an EV powertrain, augmented by simultaneously validating the modeling results on a real-world vehicle which is performance tested on a chassis dynamometer. The combination of these modeling techniques and real-world validation demonstrates a methodology for a cost effective means of rapidly developing and validating high performance EV powertrains, filling the literature gaps in how these modeling methodologies can be carried out in a research framework.

2011 ◽  
Vol 39 (3) ◽  
pp. 193-209 ◽  
Author(s):  
H. Surendranath ◽  
M. Dunbar

Abstract Over the last few decades, finite element analysis has become an integral part of the overall tire design process. Engineers need to perform a number of different simulations to evaluate new designs and study the effect of proposed design changes. However, tires pose formidable simulation challenges due to the presence of highly nonlinear rubber compounds, embedded reinforcements, complex tread geometries, rolling contact, and large deformations. Accurate simulation requires careful consideration of these factors, resulting in the extensive turnaround time, often times prolonging the design cycle. Therefore, it is extremely critical to explore means to reduce the turnaround time while producing reliable results. Compute clusters have recently become a cost effective means to perform high performance computing (HPC). Distributed memory parallel solvers designed to take advantage of compute clusters have become increasingly popular. In this paper, we examine the use of HPC for various tire simulations and demonstrate how it can significantly reduce simulation turnaround time. Abaqus/Standard is used for routine tire simulations like footprint and steady state rolling. Abaqus/Explicit is used for transient rolling and hydroplaning simulations. The run times and scaling data corresponding to models of various sizes and complexity are presented.


2017 ◽  
Vol 89 (6) ◽  
pp. 791-796
Author(s):  
Yasser A. Nogoud ◽  
Attie Jonker ◽  
Shuhaimi Mansor ◽  
A.A.A. Abuelnuor

Purpose This paper aims to propose a spreadsheet method for modeling and simulation of a retraction system mechanism for the retractable self-launching system for a high-performance glider. Design/methodology/approach More precisely, the method is based on parametric link design using Excel spreadsheets. Findings This method can be used for kinematic and dynamic analysis, graphical plotting and allows simulation of control kinematics with the ability to make quick and easy parametric changes to a design. It also has the ability to calculate the loads imposed on each component in the control system as a function of input loads and position. Practical implications This paper shows that it is possible to model complex control systems quickly and easily using spreadsheet programs already owned by most small companies. The spreadsheet model is a parametric model, and it gives a simple visual presentation of the control system with interactive movement and control by the user. Originality/value This spreadsheet model in conjunction with a simple CAD program enables the rapid and cost-effective development of control system components.


Author(s):  
Hao Zhang ◽  
Liangxiao Jiang ◽  
Wenqiang Xu

Crowdsourcing services provide a fast, efficient, and cost-effective means of obtaining large labeled data for supervised learning. Ground truth inference, also called label integration, designs proper aggregation strategies to infer the unknown true label of each instance from the multiple noisy label set provided by ordinary crowd workers. However, to the best of our knowledge, nearly all existing label integration methods focus solely on the multiple noisy label set itself of the individual instance while totally ignoring the intercorrelation among multiple noisy label sets of different instances. To solve this problem, a multiple noisy label distribution propagation (MNLDP) method is proposed in this study. MNLDP first transforms the multiple noisy label set of each instance into its multiple noisy label distribution and then propagates its multiple noisy label distribution to its nearest neighbors. Consequently, each instance absorbs a fraction of the multiple noisy label distributions from its nearest neighbors and yet simultaneously maintains a fraction of its own original multiple noisy label distribution. Promising experimental results on simulated and real-world datasets validate the effectiveness of our proposed method.


1988 ◽  
Vol 61 (2) ◽  
pp. 223-237 ◽  
Author(s):  
A. U. Paeglis ◽  
F. X. O'Shea

Abstract The zinc sulfonate of EPDM, an ionic elastomer polymer, can be readily formulated into useful thermoplastic elastomer compounds having beneficial properties and processing characteristics. The thermoplastic processing characteristics of these ionic elastomers are uniquely controlled by “ionolyzers,” preferential ionic plasticizers. These additives induce thermal reversibility in the ionic crosslink and control the response of the ionic associations to temperature. Ionic elastomer compounds maintain many of the performance features characteristic of vulcanized EPDM, such as low-temperature flexibility, thermal stability, and weatherability, while providing the added advantages of heat weldability and elimination of vulcanization. We have developed a cost-effective ionic elastomer formulation that meets or exceeds the RMA recommendations for black EPDM in a demanding, high performance application, single-ply roofing membrane. High-strength lap seams can be rapidly fabricated using portable hot air welders, a technique unavailable to conventional vulcanized EPDM sheet. Other applications have been investigated for these polymers, such as hose, footwear, mechanical goods, adhesives, impact modifiers, and asphalt modifiers both as thermoplastic elastomers and as modifiers for other materials. These applications have taken advantage of the unique rheological and solubility properties of these polymers. In addition, a new polymer grade offers an advance in the ability to formulate higher strength and more highly filled and extended ionic elastomer compositions.


Author(s):  
Holger Roser

In this paper, a simple positive displacement mechanism is investigated, which comprises two counter-rotating meshing rotors within a casing. Although considered for various applications more than a century ago, the basic geometry of this mechanism has not been further explored or adapted to modern gas compressor technology. As a fully balanced rotational mechanism operating at uniform angular velocity, potential applications range from pumps to expanders, from slow large displacement to high-speed devices; nonetheless, this research focuses on high-performance oil-less gas compressors as an ideal application. During one complete cycle, the main rotor compresses and discharges the fluid, whilst the secondary rotor seals the compression chamber. Important features of this mechanism are the circular profiles of the rotors, the potential to accommodate large ports for reduced flow losses, and ease of cooling. The simple geometry facilitates a cost-effective means of achieving tight operating clearances between rotors and casing for enhanced sealing without the need for liquid lubricants such as oil. This study and preliminary tests indicate that pressure ratios suitable for standard industrial applications can be obtained over a broad speed range, whilst minimizing friction and flow losses, a major drawback of current technologies. Moreover, two-phase compression and injection of liquids prior to compression have been studied and identified as a means to further improve efficiency and cooling.


2018 ◽  
Vol 66 (4) ◽  

The restorative qualities of sleep are fundamentally the basis of the individual athlete’s ability to recover and perform, and to optimally be able to challenge and control the effects of exercise regimes in high performance sport. Research consistently shows that a large percentage of the population fails to obtain the recommended 7–9 hours of sleep per night [17]. Moreover, recent years’ research has found that athletes have a high prevalence of poor sleep quality [6]. Given its implications on the recovery process, sleep affects the quality of the athlete’s training and outcome of competitions. Although an increasing number of recovery aids (such as cold baths, anti-inflammatory agents, high protein intake etc.) are available, recent years research show the important and irreplaceable role of sleep and that no recovery method can compensate for the lack of sleep. Every facet of an athlete’s life has the capacity to either create or take out energy, contribute to the overall stress level and subsequently the level of both recovery and performance. While traditional approaches to performance optimization focus simply on the physical stressors, this overview will highlight the benefits and the basic principles of sleep, its relation to recovery and performance, and provide input and reflect on what to consider when working with development and maintenance of athletic performance.


Author(s):  
Bahman Abbasi ◽  
Keith Wait ◽  
Michael Kempiak

Increasingly stringent industry standards have posed significant challenges on manufacturers to enhance the design and performance of household refrigerators. One of the least expensive and most effective means of improving the system is optimizing the control strategy. Some of the most promising control systems, such as adaptive and optimal control methods, require an accurate model of the system to guide the control effort. However, the complexity and interconnectedness of thermal and refrigerant flow phenomena make developing modern control systems a particularly challenging aspect of designing refrigerators, in spite of many decades of research and development. There exist models to correlate the desired compartments’ temperatures to that of the evaporator coil. However, there is a lack of a general approach to translate the required evaporator temperature to a compressor speed that provides it in an energy efficient manner. This work introduces a method to make that connection. The technique developed in this work can be adjusted for implementation on various refrigerator sizes and platforms to help modulate and control the compressor speed in real time.


2018 ◽  
Vol 188 ◽  
pp. 04004
Author(s):  
Nicola Gallo ◽  
Silvio Pappadá ◽  
Umberto Raganato ◽  
Stefano Corvaglia

As the use of composites for high-performance structures for aerospace applications is constantly increasing, together with the complexity and scale of such structures, an increasingly effort is carried out for the development of advanced techniques for composites structural repair. Mechanical loads and environmental conditions often cause composite damages. If material damage is not extensive, structural repair is the most cost-effective solution. Composite patches can be mechanically fastened, adhesively bonded or co-cured. Bonding or co-curing process provides enhanced stress transfer mechanisms, joint efficiencies and aerodynamic performance. In this paper an innovative and reliable technique to repair damaged composite aeronautical components, named High Pressure Repair Dome (HPRD), is shown. The innovative aspect of this solution is the possibility to bond or co-cure a composite prepreg patch under a pressurized dome, thus using a prepreg compatible with the composite structure. HPRD was developed to allow in-situ repairing on full-scale structures, with the possibility of an accurate control of the parameters of the curing cycle. The advantages and performance of HPRD approach will be discussed and compared with traditional techniques, describing the results achieved and the activity on-course for the full industrialization of this system.


Author(s):  
Kenneth S. Warren

AbstractMost communicable diseases are caused by infectious agents that are not visible to the naked eye, which led earlier societies to believe in miasmas and control by quarantine. Although microscopes revealed the agents in the eighteenth century, they were not associated with disease syndromes until the late nineteeth century. Today, vaccines are the most cost-effective means of control.


Sign in / Sign up

Export Citation Format

Share Document