Thermoplastic Elastomer Compounds from Sulfonated EPDM Ionomers

1988 ◽  
Vol 61 (2) ◽  
pp. 223-237 ◽  
Author(s):  
A. U. Paeglis ◽  
F. X. O'Shea

Abstract The zinc sulfonate of EPDM, an ionic elastomer polymer, can be readily formulated into useful thermoplastic elastomer compounds having beneficial properties and processing characteristics. The thermoplastic processing characteristics of these ionic elastomers are uniquely controlled by “ionolyzers,” preferential ionic plasticizers. These additives induce thermal reversibility in the ionic crosslink and control the response of the ionic associations to temperature. Ionic elastomer compounds maintain many of the performance features characteristic of vulcanized EPDM, such as low-temperature flexibility, thermal stability, and weatherability, while providing the added advantages of heat weldability and elimination of vulcanization. We have developed a cost-effective ionic elastomer formulation that meets or exceeds the RMA recommendations for black EPDM in a demanding, high performance application, single-ply roofing membrane. High-strength lap seams can be rapidly fabricated using portable hot air welders, a technique unavailable to conventional vulcanized EPDM sheet. Other applications have been investigated for these polymers, such as hose, footwear, mechanical goods, adhesives, impact modifiers, and asphalt modifiers both as thermoplastic elastomers and as modifiers for other materials. These applications have taken advantage of the unique rheological and solubility properties of these polymers. In addition, a new polymer grade offers an advance in the ability to formulate higher strength and more highly filled and extended ionic elastomer compositions.

2017 ◽  
Vol 89 (6) ◽  
pp. 791-796
Author(s):  
Yasser A. Nogoud ◽  
Attie Jonker ◽  
Shuhaimi Mansor ◽  
A.A.A. Abuelnuor

Purpose This paper aims to propose a spreadsheet method for modeling and simulation of a retraction system mechanism for the retractable self-launching system for a high-performance glider. Design/methodology/approach More precisely, the method is based on parametric link design using Excel spreadsheets. Findings This method can be used for kinematic and dynamic analysis, graphical plotting and allows simulation of control kinematics with the ability to make quick and easy parametric changes to a design. It also has the ability to calculate the loads imposed on each component in the control system as a function of input loads and position. Practical implications This paper shows that it is possible to model complex control systems quickly and easily using spreadsheet programs already owned by most small companies. The spreadsheet model is a parametric model, and it gives a simple visual presentation of the control system with interactive movement and control by the user. Originality/value This spreadsheet model in conjunction with a simple CAD program enables the rapid and cost-effective development of control system components.


1998 ◽  
Vol 1624 (1) ◽  
pp. 132-139
Author(s):  
Mary Lou Ralls ◽  
Ramon L. Carrasquillo ◽  
Ned H. Burns

High-performance concrete (HPC) bridges can be cost-effective both initially and in the long term, provided the design and construction optimize the improved performance characteristics of HPC. Using the high-strength characteristic of HPC can reduce the required number and size of beams. Using the improved durability characteristics of HPC can reduce maintenance requirements and extend the service life. Practical guidelines help design and construction engineers implement HPC in bridges.


Author(s):  
Reidar André Skarbøvik ◽  
Henry Piehl ◽  
Sverre Torben ◽  
Mette Lokna Nedreberg ◽  
Vilmar Æsøy

Abstract In many marine applications, modern high-performance synthetic fibre ropes have replaced, and are continuing to replace, well-known steel wire rope solutions due to the low weight of the synthetic ropes removing limitations for operations at large water depths. In some cases, replacement of steel wires with synthetic ropes has caused permanent deformations and damage to multilayer winch drums, indicating that synthetic fibre ropes can cause larger pressure on winch drums than steel wire. This paper presents the first results from a novel experimental investigation of a multilayer winch subjected to a selection of braided high-performance synthetic fibre ropes and a reference steel wire rope. The tested ropes, with nominal diameters between 12 and 20mm, are spooled at different tensile loads and with maximum number of layers in the range of 10 to 19. The experiments utilize a test rig with two winch drums, controllable spooling gear and sheaves with load cells to apply and control required load and speed during spooling. Measurements from twelve biaxial strain gauges on the inside of a thick high-strength drum are used to measure stresses in the structure. The results show that the selected fibre ropes induce considerably larger stress in the winch drum than the steel wire rope. This confirms that design of multilayer winch drums with high-performance synthetic fibre ropes requires special considerations and that the guidance for multilayer stress calculations, related to steel wire ropes, in DNV-GL-0378 “Standard for offshore and platform lifting appliances” is not applicable for synthetic fibre rope applications.


2017 ◽  
Vol 62 (2) ◽  
pp. 1113-1117
Author(s):  
Seung-Yeon Park ◽  
J.H. Kim ◽  
S.J. Seo ◽  
J.S. On ◽  
K.M. Lim

AbstractIn this study, we have developed the manufacturing technology for high strength gray cast irons by using the spent permanent magnet scraps. The cast specimen inoculated by using a spent magnet scraps showed the excellent tensile strength up to 306MPa. This tensile strength value is 50MPa higher than that of the specimen cast without inoculation, and is similar to that of the specimen inoculated by using the expensive misch-metal. These superior mechanical properties are attributed to complex sulfides created during solidification that promote the formation and growth of Type-A graphite. It is therefore concluded that spent magnets scrap can provide an efficient and cost-effective inoculation agent for the fabrication of high-performance gray cast iron.


2008 ◽  
Vol 81 (1) ◽  
pp. 60-76 ◽  
Author(s):  
Sandeep Tembhekar ◽  
Madhuchhanda Maiti ◽  
Jinu Jacob George ◽  
Anjan Biswas ◽  
Anil K. Bhowmick ◽  
...  

Abstract A thermoplastic elastomer (TPE) is a rubbery material with final properties and functional performance similar to those of a conventional vulcanized rubber at ambient temperature, yet it can be processed as a thermoplastic at elevated temperature. The main objective of the present investigation was to prepare novel olefinic thermoplastic elastomers based on blends of a thermoplastic i.e. low density polyethylene (PE) and new ethylene-butene copolymers (PEB), which would have higher strength and lower hardness compared to the existing TPEs. The 70:30 PEB: PE blend exhibited the best properties. Ethylene vinyl acetate was found to work as compatibilizer at lower loadings in these blends. The resultant blends were of low hardness (60–80 Shore A) and high strength (26–33 MPa). The interaction parameter and the morphology of the blends were the key parameters, which governed the final properties of blends.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 402
Author(s):  
Fábio A.O. Fernandes ◽  
António B. Pereira ◽  
Bernardo Guimarães ◽  
Tiago Almeida

Laser processing is a rapidly growing key technology driven by several advantages such as cost and performance. Laser welding presents numerous advantages in comparison with other welding technologies, providing high reliability and cost-effective solutions. Significant interest in this technology, combined with the increasing demand for high-strength lightweight structures has led to an increasing interest in joining high-performance engineering thermoplastics by employing laser technologies. Laser transmission welding is the base method usually employed to successfully join two polymers, a transmitting one through which the laser penetrates, and another one responsible for absorbing the laser radiation, resulting in heat and melting of the two components. In this work, the weldability of solely transmitting high-performance engineering thermoplastic is analyzed. ERTALON® 6 SA, in its white version, is welded by a pulsed Nd:YAG laser. Tensile tests were performed in order to evaluate the quality of each joint by assessing its strength. A numerical model of the joint is also developed to support the theoretical approaches employed to justify the experimental observations.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1493
Author(s):  
Feyijimi Adegbohun ◽  
Annette von Jouanne ◽  
Ben Phillips ◽  
Emmanuel Agamloh ◽  
Alex Yokochi

Accurate electric vehicle (EV) powertrain modeling, simulation and validation is paramount for critical design and control decisions in high performance vehicle designs. Described in this paper is a methodology for the design and development of EV powertrain through modeling, simulation and validation on a real-world vehicle system with detailed analysis of the results. Although simulation of EV powertrains in software simulation environments plays a significant role in the design and development of EVs, validating these models on the real-world vehicle systems plays an equally important role in improving the overall vehicle reliability, safety and performance. This modeling approach leverages the use of MATLAB/Simulink software for the modeling and simulation of an EV powertrain, augmented by simultaneously validating the modeling results on a real-world vehicle which is performance tested on a chassis dynamometer. The combination of these modeling techniques and real-world validation demonstrates a methodology for a cost effective means of rapidly developing and validating high performance EV powertrains, filling the literature gaps in how these modeling methodologies can be carried out in a research framework.


2008 ◽  
Vol 81 (5) ◽  
pp. 737-752 ◽  
Author(s):  
O. Grigoryeva ◽  
A. Fainleib ◽  
J. Grenet ◽  
J. M. Saiter

Abstract Reactive compatibilization of recycled low- or high-density polyethylenes (LDPE and HDPE, respectively) and ground tire rubber (GTR) via chemical interactions of pre-functionalized components in their blend interface has been carried out. Polyethylene component was functionalized with maleic anhydride (MAH); as well, the rubber component was modified via functionalization with MAH or acrylamide (AAm) using chemically or irradiation (γ-rays) induced grafting techniques. The grafting degree and molecular mass distribution of the functionalized polymers have been measured via FTIR and Size Exclusion Chromatography (SEC) analyses, respectively. Additional coupling agents such as p-phenylene diamine (PDA) and polyamide fiber were used for producing some thermoplastic elastomer (TPE). Thermoplastic elastomer materials based on synthesized reactive polyethylenes and GTR as well as ethylene-propylenediene monomer rubber (EPDM) were prepared by dynamic vulcanization of the rubber phase inside thermoplastic (polyethylene) matrix and their phase structure, and main properties have been studied using DSC, DMTA and mechanical testing. As a result, high performance thermoplastic elastomers based on functionalized polyethylene and ground rubber with improved mechanical properties have been developed.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (09) ◽  
pp. 507-515 ◽  
Author(s):  
David Skuse ◽  
Mark Windebank ◽  
Tafadzwa Motsi ◽  
Guillaume Tellier

When pulp and minerals are co-processed in aqueous suspension, the mineral acts as a grinding aid, facilitating the cost-effective production of fibrils. Furthermore, this processing allows the utilization of robust industrial milling equipment. There are 40000 dry metric tons of mineral/microfbrillated (MFC) cellulose composite production capacity in operation across three continents. These mineral/MFC products have been cleared by the FDA for use as a dry and wet strength agent in coated and uncoated food contact paper and paperboard applications. We have previously reported that use of these mineral/MFC composite materials in fiber-based applications allows generally improved wet and dry mechanical properties with concomitant opportunities for cost savings, property improvements, or grade developments and that the materials can be prepared using a range of fibers and minerals. Here, we: (1) report the development of new products that offer improved performance, (2) compare the performance of these new materials with that of a range of other nanocellulosic material types, (3) illustrate the performance of these new materials in reinforcement (paper and board) and viscosification applications, and (4) discuss product form requirements for different applications.


2011 ◽  
Vol 39 (3) ◽  
pp. 193-209 ◽  
Author(s):  
H. Surendranath ◽  
M. Dunbar

Abstract Over the last few decades, finite element analysis has become an integral part of the overall tire design process. Engineers need to perform a number of different simulations to evaluate new designs and study the effect of proposed design changes. However, tires pose formidable simulation challenges due to the presence of highly nonlinear rubber compounds, embedded reinforcements, complex tread geometries, rolling contact, and large deformations. Accurate simulation requires careful consideration of these factors, resulting in the extensive turnaround time, often times prolonging the design cycle. Therefore, it is extremely critical to explore means to reduce the turnaround time while producing reliable results. Compute clusters have recently become a cost effective means to perform high performance computing (HPC). Distributed memory parallel solvers designed to take advantage of compute clusters have become increasingly popular. In this paper, we examine the use of HPC for various tire simulations and demonstrate how it can significantly reduce simulation turnaround time. Abaqus/Standard is used for routine tire simulations like footprint and steady state rolling. Abaqus/Explicit is used for transient rolling and hydroplaning simulations. The run times and scaling data corresponding to models of various sizes and complexity are presented.


Sign in / Sign up

Export Citation Format

Share Document