scholarly journals Design and Implement of Three-Phase Permanent-Magnet Synchronous Wave Generator using Taguchi Approach

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 2010
Author(s):  
Chun-Yu Hsiao ◽  
Chin-Hsiang Lai ◽  
Zhu-Xuan Zheng ◽  
Guan-Yu Li

In this paper, the design and performance analysis of a high-efficiency permanent-magnet synchronous wave generator (PSWG) are presented. A systematic approach for the design of the outer rotor was proposed as a prototype model. The magnetic field, magnetic circuit characteristics, electrical characteristics of the generator, and optimal design parameters such as the pole–arc ratio and shoe outer length were determined using the Taguchi method, finite-element analysis (FEA) software, and rotor skewing techniques. The proposed six series and six parallel-connection winding configurations can provide an evenly distributed current for practical applications. A PSWG was designed and fabricated according to the proposed methodology. According to the experimental results by implementing the optimized design, the efficiencies of the proposed PSWG which used 3.6 Ω load at 300 rpm is 86.32% and the efficiency error between simulation and experiment is less than 1.8%. It verifies the feasibility of the proposed method to PSWG and the structural reliability optimization design.

2017 ◽  
Vol 18 (2) ◽  
pp. 158-176 ◽  
Author(s):  
Amir Nikbakhsh ◽  
Hamidreza Izadfar ◽  
Yousef Alinejad Beromi

One of the most important ways to reduce fossil fuel consumption and consequently reduce greenhouse gases and environmental pollution is the use of renewable energies such as water, sun, wind, etc. One of the most efficient ways to take advantages of the shallow flowing waters such as rivers and fountains in electrical power generation is the use of hydrodynamic screw in the direction of water flow. The design of the generator for this application results in environmental dangers decrease. On the other hand, it provides some part of electrical energy required for human beings. Generators in hydrodynamic renewable energy system ought to have features such as high efficiency, power density and reliability as well as low volume. Among various generators, the permanent magnet synchronous generator (PMSG) meets these requirements very well. In this paper, first, analytical calculations and the design process of PMSG were explained. Then, the ant colony optimization (ACO) was used for the optimization of design quantities. PMSG design optimization increased in efficiency and decreased in volume. By improving these two parameters in the designed PMSG, it gets very suitable to be used in hydrodynamic renewable energy system. Finally, the results of the optimized design of PMSG were validated through simulation of it in Maxwell software and applying finite element analysis (FEA). Also the final results have been compared to similar experimental researches results.


2013 ◽  
Vol 448-453 ◽  
pp. 2114-2119 ◽  
Author(s):  
Izzeldin Idris Abdalla ◽  
Taib Ibrahim ◽  
Nursyarizal Mohd Nor

This paper describes a design optimization to achieve optimal performance of a two novel single-phase short-stroke tubular linear permanent magnet motors (TLPMMs) with rectangular and trapezoidal permanent magnets (PMs) structures. The motors equipped with a quasi-Halbach magnetized moving-magnet armature and slotted stator with a single-slot carrying a single coil. The motors have been developed for reciprocating compressor applications such as household refrigerators. It is observed that the TLPMM efficiency can be optimized with respect to the leading design parameters (dimensional ratios). Furthermore, the influence of mover back iron is investigated and the loss of the motor is computed. Finite element analysis (FEA) is employed for the optimization, and the optimal values of the ratio of the axial length of the radially magnetized magnets to the pole pitch as well as the ratio of the PMs outer radius-to-stator outer radius (split ratio), are identified.


Author(s):  
Vikram Venkatadri ◽  
Mark Downey ◽  
Xiaojie Xue ◽  
Dipak Sengupta ◽  
Daryl Santos ◽  
...  

System-On-Film (SOF) module is a complex integration of a fine pitch high density die and surface mounted discrete devices on a polyimide (PI) film laminate. The die is connected to the film using a thermo-compression flip-chip bonding (TCB) process which is capable of providing a very high density interconnect at less than 50um pitch. Several design and bonding parameters have to be controlled in order to achieve a reliable bond between the Au bumps on the die and the Sn plated Cu traces on the PI film. In the current work, the TCB process is studied using Finite Element Analysis (FEA) to optimize the design parameters and assure proper process margins. The resultant forces acting on the bump-to-trace interfaces are quantified across the different potential geometrical combinations. Baseline simulations showed higher stresses on specific bump locations and stress gradients acting on the bumps along the different sides of the die. These observations were correlated to both the failures and near failures on the actual test vehicles. Further simulations were then utilized to optimize and navigate design tradeoffs at both the die and flexible substrate design levels for a more robust design solution. Construction analysis performed on parts built using optimized design parameters showed significant improvements and correlated well with the simulation results.


Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 523
Author(s):  
Ichiro Shimizu ◽  
Akira Wada ◽  
Makoto Sasaki

Recently, the demand for a bio-absorbable coronary stent to promote recovery after an operation has increased. An option for such a stent is one made of a magnesium alloy, which has biodegradable properties. However, magnesium alloys have lower rigidity and lower ductility than other metals; as such, an appropriate stent structure is required to ensure radial rigidity. In this study, design parameters for an AZ31 magnesium alloy stent with sufficient radial rigidity were investigated. The necessary radial rigidity was determined by comparison tests against commercially available stents. The design parameters of the cell struts were selected and the optimum values to achieve high radial rigidity were investigated by means of elastic–plastic finite element analysis. Finally, a trial model stent based on the optimized design parameters was produced. It was confirmed that the model had sufficient radial rigidity, with no fracturing evident during crimping and expansion processes.


2013 ◽  
Vol 427-429 ◽  
pp. 90-93 ◽  
Author(s):  
Wen Qing Wang

Based on the principle of orthogonal test, the optimization model of sunflower shaped arch bridge scheme was set up. The five key design parameters were selected as the main factors. The four computation index, which reflect mechanical performance, were selected as analytical objects. The 16 orthogonal experiment schemes were arranged with four levels orthogonal table . The curves of the factors to the index were obtained from the mechanical response under dead load and live load through the finite element analysis model. By the range analysis method, the influential levels of the factors to the index were obtained from the result of the test , and the factor optimizatuion level of the factors was determined to further optimize the layout scheme of the sunfloawer shaped arch bridge.


2012 ◽  
Vol 516-517 ◽  
pp. 1746-1750
Author(s):  
Chao Yuan Cheng ◽  
Chun Yu Hsiao ◽  
Shu Wei Chung ◽  
Chun Pin Chiang ◽  
Zai Wei Chin

Wind power is an important source of green power. The equipment, generators, and power systems are all determining factors of equipment efficiency. High efficiency generators of medium and small size are widely used in daily life. Cogging torque is a major issue affecting generator efficiency. This paper proposes an optimized design for permanent-magnet synchronous generators using arc-shaped magnets to reduce cogging torque. The proposed approach improves performance significantly.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5311
Author(s):  
Ki-Doek Lee ◽  
Jeong-Jong Lee ◽  
Myung-Hwan Yoon ◽  
Joon-Sung Park

A voltage-parameter map (VP-Map) is proposed for predicting the performance of electric vehicles (EVs) and hybrid EVs (HEVs), which varies with respect to the parameters in a variable load and flux-weakening range, and determining the design parameters. Through this, the maximum torque that can be generated at the maximum speed, the input current for generation of the rated torque, and whether the vehicle is operable with a light load are predicted, and the design parameters suitable for the 120-kW class interior permanent-magnet (PM) synchronous motor for HEVs, which is the target electric motor of this study, are determined. A flux-concentrating PM synchronous motor (FCPMSM) is proposed that can be designed using the desired design parameters depending on the degree of the flux concentration. The validity of the VP-Map was verified by analyzing the characteristics of three types of FCPMSMs with different parameter combinations, and a PM synchronous motor for an EV having a high output, high efficiency, and high-power factor was designed. Lastly, the requirements were checked, and the analysis was validated by testing the designed motor.


2021 ◽  
Vol 300 ◽  
pp. 01001
Author(s):  
Lei Chen ◽  
Zuoxia Xing ◽  
Bowen Zhu ◽  
Dongrui Wang ◽  
Yuzhang Gao ◽  
...  

Cogging torque is one of the unique problems of permanent magnet generators. Its main cause is the uneven distribution of the generator’s magnetic permeability, which directly affects the starting and running performance of the generator. The study of cogging torque suppression methods is of great significance for improving the operating stability and service life of generators. Through the analysis of the principle of cogging torque, an optimization method for the amplitude of cogging torque based on Taguchi algorithm for the two parameters of pole arc coefficient and skew angle is established. And the finite element analysis method is used to quantitatively compare the characteristic parameters of the generator model before and after the optimization by Taguchi algorithm. The results show that when the pole arc coefficient and the angle of the chute are in the optimal value at the same time, the cogging torque of the generator can be greatly reduced, and its air gap magnetic density waveform and induced electromotive force waveform are ideal, which provides a research method for the design and parameter optimization of large megawatt permanent magnet synchronous wind turbines.


2014 ◽  
Vol 889-890 ◽  
pp. 268-271
Author(s):  
Cui Xia Guo ◽  
Hong Zhi Zhang

The diaphragm spring is the key element in modern automobile clutch. Its elastic characteristic affects the overall performance of the clutch. Taking a car as an example, According to the design requirements and characteristics, it was to establish the mathematical model of optimum design of automobile clutch diaphragm spring. It was to optimize the design parameters of the basic structure of the diaphragm spring by using the MATLAB optimization toolbox. It did finite element analysis for the 3D modeling using ANSYS software. The results show that: it can be obtained more reasonably of the diaphragm spring elastic curve by the optimal design, shorten the design cycle, reduce the cost of.


Sign in / Sign up

Export Citation Format

Share Document