scholarly journals Increasing Biogas Yield from Fodder by Microbial Stimulation of Propionic Acid Synthesis in Grass Silages

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2843
Author(s):  
Krystyna Zielińska ◽  
Agata Fabiszewska ◽  
Katarzyna Piasecka-Jóźwiak ◽  
Renata Choińska

A new direction in the use of lactic acid bacteria inoculants is their application for renewable raw materials ensiling for biogas production. The aim of the study was to demonstrate the possibility of stimulating the synthesis of propionic acid in the process of co-fermentation of selected strains of Lactobacillus buchneri and L. diolivorans as well as L. buchneri and Pediococcus acidilactici. L. buchneri KKP 2047p and P. acidilactici KKP 2065p were characterized by the special capabilities for both synthesis and metabolism of 1,2-propanediol. L. diolivorans KKP 2057p stands out for the ability to metabolize 1,2-propanediol to propionic acid. As a result of the co-fermentation a concentration of propionic acid was obtained at least 1.5 times higher in the final stage of culture in comparison to cultivating individual species of bacteria separately. The results of in vitro experiments were applied in agricultural practice, by application of two lactic acid bacteria inoculants in ensiling of grass silage and improving its suitability for biogas production. Grass silages made with the addition of the inoculant were characterized by the content of 1,2-propanediol, 1-propanol and propionic acid ensured extension of the aerobic stability from 4 to 7 days in comparison to untreated silages. It was found that the use of both inoculants resulted in an approximately 10 - 30% increase in biogas yield from this raw material.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Prabin Koirala ◽  
Ndegwa Henry Maina ◽  
Hanna Nihtilä ◽  
Kati Katina ◽  
Rossana Coda

Abstract Background Lactic acid bacteria can synthesize dextran and oligosaccharides with different functionality, depending on the strain and fermentation conditions. As natural structure-forming agent, dextran has proven useful as food additive, improving the properties of several raw materials with poor technological quality, such as cereal by-products, fiber-and protein-rich matrices, enabling their use in food applications. In this study, we assessed dextran biosynthesis in situ during fermentation of brewers´ spent grain (BSG), the main by-product of beer brewing industry, with Leuconostoc pseudomesenteroides DSM20193 and Weissella confusa A16. The starters performance and the primary metabolites formed during 24 h of fermentation with and without 4% sucrose (w/w) were followed. Results The starters showed similar growth and acidification kinetics, but different sugar utilization, especially in presence of sucrose. Viscosity increase in fermented BSG containing sucrose occurred first after 10 h, and it kept increasing until 24 h concomitantly with dextran formation. Dextran content after 24 h was approximately 1% on the total weight of the BSG. Oligosaccharides with different degree of polymerization were formed together with dextran from 10 to 24 h. Three dextransucrase genes were identified in L. pseudomesenteroides DSM20193, one of which was significantly upregulated and remained active throughout the fermentation time. One dextransucrase gene was identified in W. confusa A16 also showing a typical induction profile, with highest upregulation at 10 h. Conclusions Selected lactic acid bacteria starters produced significant amount of dextran in brewers’ spent grain while forming oligosaccharides with different degree of polymerization. Putative dextransucrase genes identified in the starters showed a typical induction profile. Formation of dextran and oligosaccharides in BSG during lactic acid bacteria fermentation can be tailored to achieve specific technological properties of this raw material, contributing to its reintegration into the food chain.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2579
Author(s):  
Carmen-Alina Bolea ◽  
Mihaela Cotârleț ◽  
Elena Enachi ◽  
Vasilica Barbu ◽  
Nicoleta Stănciuc

Two multi-functional powders, in terms of anthocyanins from black rice (Oryza sativa L.) and lactic acid bacteria (Lactobacillus paracasei, L. casei 431®) were obtained through co-microencapsulation into a biopolymer matrix composed of milk proteins and inulin. Two extracts were obtained using black rice flour as a raw material and hot water and ethanol as solvents. Both powders (called P1 for aqueous extract and P2 for ethanolic extract) proved to be rich sources of valuable bioactives, with microencapsulation efficiency up to 80%, both for anthocyanins and lactic acid bacteria. A higher content of anthocyanins was found in P1, of 102.91 ± 1.83 mg cyanindin-3-O-glucoside (C3G)/g dry weight (DW) when compared with only 27.60 ± 17.36 mg C3G/g DW in P2. The morphological analysis revealed the presence of large, thin, and fragile structures, with different sizes. A different pattern of gastric digestion was observed, with a highly protective effect of the matrix in P1 and a maximum decrease in anthocyanins of approximatively 44% in P2. In intestinal juice, the anthocyanins decreased significantly in P2, reaching a maximum of 97% at the end of digestion; whereas in P1, more than 45% from the initial anthocyanins content remained in the microparticles. Overall, the short-term storage stability test revealed a release of bioactive from P2 and a decrease in P1. The viable cells of lactic acid bacteria after 21 days of storage reached 7 log colony forming units (CFU)/g DW.


2021 ◽  
Vol 913 (1) ◽  
pp. 012035
Author(s):  
M Amaro ◽  
M D Ariyana ◽  
B R Handayani ◽  
Nazaruddin ◽  
S Widyastuti ◽  
...  

Abstract Along with raising public awareness about health and increasing yogurt consumption, it is critical to improve the quality of the yogurt. The innovation of yogurt producing in terms of flavor variety is critical since it can entice consumers to consume yogurt. This innovation is possible through the use of high-nutrient plant components that have not been optimally exploited in the surrounding environment. The purpose of this study was to examine the quality of yogurt produced from a variety of raw materials and stabilized naturally using Eucheuma spinosum seaweed. This study used a completely randomized design with a single factor: the type of raw material utilized in the production of yogurt (corn, sweet potato, pumpkin, banana and pineapple). The parameters analyzed included total lactic acid content, pH, total lactic acid bacteria, bacterial viability, viscosity, and organoleptic qualities such as homogeneity and taste were examined using scoring and hedonic methods. The data were evaluated using an analysis of variance (ANOVA) with a significance level of 5%, and the significantly different data were further tested using an additional test of an honest significant difference (HSD). Results show that yogurt made from corn was the best treatment, with pH value of 4.28, total lactic acid content was 1.67%; viscosity was 74,67cP, total lactic acid bacteria was 11.02 log CFU/ml, the bacterial viability met the concentration as a probiotic drink with the decreasing number 0.21 log CFU/ml, scoring test homogeneity score was 3,21 (slightly homogenous), taste score was 3.08 (slightly sour) and hedonic score for homogeneity and taste were 3.29 and 3.25 respectively.


2013 ◽  
Vol 675 ◽  
pp. 374-378
Author(s):  
Bin Yang ◽  
Fa Gen Yang ◽  
Wu Di Zhang ◽  
Fang Yin ◽  
Xing Ling Zhao ◽  
...  

In order to gain biogas production potential and energy conversion efficiency of biogas fermentation of sorghum distilled residue (SDR), the anaerobic batch fermentation experiments were performed at 30 degrees Celsius. After experiments, we got experimental results as follows: biogas production of SDR during total fermentation time of 28days is 2885mL; properties of raw materials including: TS is 88.58%, VS is 16.69%, heating value is 15.684kJ/g, TS biogas yield is 220mL/g, VS biogas yield is 1300ml/g, raw material biogas yield is 190mL/g, and energy conversion efficiency of biogas fermentation of SDR is 30.38%. The results indicate that biogas fermentation is an effective new method to recycle clean energy from SDR.


2021 ◽  
Vol 19 (1) ◽  
pp. 998-1008
Author(s):  
Grzegorz S. Jodłowski ◽  
Edyta Strzelec

Abstract Lactic acid is a naturally existing organic acid, which may be used in many different branches of industrial application. It can be made in the sugar fermentation process from renewable raw lactic acid, which is an indispensable raw material, including in the agricultural, food, and pharmaceutical industries. It is an ecological product that has enjoyed great popularity in recent years. In 2010, the US Department of Energy published a report about lactic acid to be a potential building element for future technology, whose demand grows year by year. The lactic acid molecule naturally exists in plants, microorganisms, and animals and can also be produced by carbohydrate fermentation or chemical synthesis from coal, petroleum products, and natural gas. In industry, lactic acid can be produced by chemical synthesis or fermentation. Although racemic lactic acid is always produced chemically from petrochemical sources, the optically pure L(+) – or D(−) – lactic acid forms can be obtained by microbial fermentation of renewable resources when an appropriate microorganism is selected. Depending on the application, one form of optically pure LA is preferred over the other. Additionally, microbial fermentation offers benefits including cheap renewable substrates, low production temperatures, and low energy consumption. Due to these advantages, the most commonly used biotechnological production process with the use of biocatalysts, i.e., lactic acid bacteria. The cost of raw materials is one of the major factors in the economic production of lactic acid. As substrate costs cannot be reduced by scaling up the process, extensive research is currently underway to find new substrates for the production of LA. These searches include starch raw materials, lignocellulosic biomass, as well as waste from the food and refining industries. Here, the greatest attention is still drawn to molasses and whey as the largest sources of lactose, vitamins, and carbohydrates, as well as glycerol – a by-product of the biodiesel component production process. Focusing on the importance of lactic acid and its subsequent use as a product, but also a valuable raw material for polymerization (exactly to PLA), this review summarizes information about the properties and applications of lactic acid, as well as about its production and purification processes. An industrial installation for the production of lactic acid is only planned to be launched in Poland. As of today, there is no commercial-scale production of this bio-raw material. Thus, there is great potential for the application of the lactic acid production technology and research should be carried out on its development.


2019 ◽  
Vol 59 (2) ◽  
pp. 376 ◽  
Author(s):  
L. Chen ◽  
X. J. Yuan ◽  
J. F. Li ◽  
Z. H. Dong ◽  
S. R. Wang ◽  
...  

Total mixed ration (TMR) silage technology has been practically used to feed ruminants in Tibet. This study was conducted on forage-based TMR to evaluate the effects of supplementing lactic acid bacteria and propionic acid on its fermentation characteristics, aerobic stability and in vitro gas production kinetics and digestibility. Experimental treatments included four variants: (1) TMR supplemented with 10 mL deionised water per kilogram fresh matter (Control); (2) TMR supplemented with 1 × 106 cfu/g Lactobacillus plantarum (L); (3) TMR supplemented with 0.3% propionic acid (P); (4) TMR supplemented with a combination of 1 × 106 cfu/g Lactobacillus plantarum and 0.3% propionic acid (LP). The latter three additives were first dissolved in deionised water and then applied as a water solution (10 mL/kg fresh matter). All treatments were ensiled in laboratory-scale silos for 45 days, and then exposed to air for 12 days to evaluate the aerobic stability of TMR silage. Further, the four experimental treatments were fermented with buffered rumen fluid to measure in vitro gas production and nutrients’ digestibility. The results indicated that all TMR silages possessed good fermentation characteristics with low pH values (<4.18) and ammonia nitrogen (NH3-N) contents (<100 g/kg total nitrogen), and high lactic acid contents (>66 g/kg DM) and Flieg points (>80). The addition of L and LP stimulated a more efficient homofermentation of TMR silage than in the variant without L, as evidenced by higher ratios of lactic:acetic acid. The addition of P had no effect (P > 0.05) on lactic acid production of TMR silage compared with the Control, whereas it decreased NH3-N content (P < 0.05). Under aerobic conditions, L silage showed less aerobic stability compared with the Control silage, whereas P and LP silages were more (P < 0.05) aerobically stable. Compared with the Control, all additives elevated (P < 0.05) the total gas production and in vitro dry matter digestibility of TMR silages. L silage had a higher (P < 0.05) in vitro neutral detergent fibre digestibility than the Control silage. Data obtained from this study suggested that TMR silage based on oat and common vetch can be well conserved with or without additives. Lactic acid bacteria were compatible with propionic acid, and addition of lactic acid bacteria together with propionic acid can improve the fermentation quality, aerobic stability and in vitro dry matter digestibility of TMR silage.


Author(s):  
Sergejs Osipovs ◽  
Aleksandrs Pučkins ◽  
Mihails Pupiņš ◽  
Jeļena Kirilova ◽  
Juris Soms

The research summarizes information on biochemical processes of biogas production and the parameters that affect the results of its production. The research examines the result of obtaining biogas from bog sludge and a mixture of crushed reed. Particular attention is given to temperature, as a parameter that affects the results of methane and biogas production.The yield of biogas and methane during the bioprocess depends on the effect of temperature. During the experiment, 2.78 L of biogas with an average methane content of 38.7% was obtained from a mixture of bog sludge and crushed reeds. If the content of organic compounds in the sludge was higher, the biogas yield would increase during the process. It is more advantageous to use the raw material mixture for biogas production. 


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 8862-8882
Author(s):  
Enhai Liu ◽  
Baozhong Zhu ◽  
Shengyong Liu ◽  
Hailong Yu ◽  
Zhiping Zhang ◽  
...  

Based on the literature on the degradation mechanism and the change of micro-functional groups in the fermentation process of modified rice straw, this study aimed to solve the problems of low biogas production rate and poor stability of the biogas production system. In this work, mathematical equations were developed and combined with duck dung and rice straw mixed raw material to perform a fermentation test. The molecular micro-functional group changes of cellulose, hemicellulose, and lignin were studied to obtain the optimal ratio of mixed raw materials for fermentation and to explore the optimization mechanism of its fermentation biogas production. Experimental results showed that the optimal ratio of mixed raw materials was 2.8:1, and the inclusion of a suitable amount of Mn2+(concentration of 2 mol × L-1) was able to strengthen MnP activity and improve the ability of white-rot fungi to rupture β-O-4 bonds. A modification pre-treatment via activated carbon-based solid acid was performed, and the experimental group generated 15.8% more cumulative biogas than the control group. The biogas yield reached its peak when 300 g of inoculum was added to the pre-treatment at a concentration of 30%.


2005 ◽  
Vol 34 (1) ◽  
pp. 91-99 ◽  
Author(s):  
K. Szekér ◽  
J. Beczner ◽  
A. Halász ◽  
Á. Mayer ◽  
J.M. Rezessy-Szabó ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document