scholarly journals An Experimental Framework for 5G Wireless System Integration into Industry 4.0 Applications

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4444
Author(s):  
Ignacio Rodriguez ◽  
Rasmus Suhr Mogensen ◽  
Andreas Fink ◽  
Taus Raunholt ◽  
Søren Markussen ◽  
...  

The fourth industrial revolution, or Industry 4.0 (I4.0), makes use of wireless technologies together with other industrial Internet-of-Things (IIoT) technologies, cyber–physical systems (CPS), and edge computing to enable the optimization and the faster re-configuration of industrial production processes. As I4.0 deployments are ramping up, the practical integration of 5G wireless systems with existing industrial applications is being explored in both Industry and Academia, in order to find optimized strategies and to develop guidelines oriented towards ensuring the success of the industrial wireless digitalization process. This paper explores the challenges arisen from such integration between industrial systems and 5G wireless, and presents a framework applicable to achieve a structured and successful integration. The paper aims at describing the different aspects of the framework such as the application operational flow and its associated tools, developed based on analytical and experimental applied research methodologies. The applicability of the framework is illustrated by addressing the integration of 5G technology into a specific industrial use case: the control of autonomous mobile robots. The results indicate that 5G technology can be used for reliable fleet management control of autonomous mobile robots in industrial scenarios, and that 5G can support the migration of the on-board path planning intelligence to the edge-cloud.

2021 ◽  
pp. 204388692098158
Author(s):  
Dipankar Chakrabarti ◽  
Rohit Kumar ◽  
Soumya Sarkar ◽  
Arindam Mukherjee

Industrial Internet of Things emerged as one of the major technologies enabling Industry 4.0 for industries. Multiple start-ups started working in the Industrial Internet of Things field to support this new industrial revolution. Distronix, one such Industrial Internet of Things start-up of India, started operations in 2014, when companies were not even aware of Industrial Internet of Things. Distronix started executing fixed-fee projects for implementation of Industrial Internet of Things. They also started manufacturing sensors to support large customers end-to-end in their Industry 4.0 journey. With the advent of public cloud, companies started demanding pay-per-use model for the solution Distronix provided. This posed a major challenge to Distronix as they had developed technology skills focusing fixed-fee customized project delivery for their clients. The situation demanded that they change their business model from individual project delivery to creation of product sand-box with pre-registered sensors and pre-defined visualization layer to support use cases for Industrial Internet of Things implementation in multiple industry sectors. It forced Rohit Sarkar, the 26 years old entrepreneur and owner of Distronix, to upgrade capabilities of his employees and transform the business model to support pay-per-use economy popularized by public cloud providers. The case discusses the challenges Rohit faced to revamp their business model in such an emerging technology field, like, to develop new skills of the technical people to support such novel initiative, reorienting sales people towards pay as use model, developing new concept of plug and play modular product, devising innovative pricing, better alliance strategy and finding out a super early adopter.


2021 ◽  
Author(s):  
Muzaffar Rao ◽  
Thomas Newe

The current manufacturing transformation is represented by using different terms like; Industry 4.0, smart manufacturing, Industrial Internet of Things (IIoTs), and the Model-Based enterprise. This transformation involves integrated and collaborative manufacturing systems. These manufacturing systems should meet the demands changing in real-time in the smart factory environment. Here, this manufacturing transformation is represented by the term ‘Smart Manufacturing’. Smart manufacturing can optimize the manufacturing process using different technologies like IoT, Analytics, Manufacturing Intelligence, Cloud, Supplier Platforms, and Manufacturing Execution System (MES). In the cell-based manufacturing environment of the smart industry, the best way to transfer the goods between cells is through automation (mobile robots). That is why automation is the core of the smart industry i.e. industry 4.0. In a smart industrial environment, mobile-robots can safely operate with repeatability; also can take decisions based on detailed production sequences defined by Manufacturing Execution System (MES). This work focuses on the development of a middleware application using LabVIEW for mobile-robots, in a cell-based manufacturing environment. This application works as middleware to connect mobile robots with the MES system.


Author(s):  
Christ P. Paul ◽  
Arackal N. Jinoop ◽  
Saurav K. Nayak ◽  
Alini C. Paul

Additive manufacturing is one of the nine technologies fuelling the fourth industrial revolution (Industry 4.0). High power lasers augmented with allied digital technologies is changing the entire manufacturing scenario through metal additive manufacturing by providing feature-based design and manufacturing with the technology called laser additive manufacturing (LAM). It enables the fabrication of customized components having complex and lightweight designs with high performance in a short period. The chapter compiles the evolution and global status of LAM technology highlighting its advantages and freedoms for various industrial applications. It discusses how LAM is contributing to Industry 4.0 for the fabrication of customized engineering and prosthetic components through case studies. It compiles research, development, and deployment scenarios of this new technology in developing economies along with the future scope of the technology.


2018 ◽  
Vol 44 ◽  
pp. 00010
Author(s):  
Julia Asaturova ◽  
Anna Mikhailova

At present, the world economy is at the stage of formation of the fourth industrial revolution, which is called to raise the industry to a new qualitative level. In this article we contemplated the history and prerequisites of the industrial revolution, defined its basic features and the most progressive technologies. We analyzed the particular features of development of the industrial revolution in Russia and abroad. We inspected the experience of foreign countries in implementing state programs in the sphere “Industry 4.0”. We investigated the concept of the Industrial Internet as a basis for developing of a new wave of the industrial revolution. We studied its main advantages, its influence on the world economy and the anticipated consequences. We investigated the factors hindering the implementation of the project related to the Industrial Internet in Russia. We formulated the primary tasks and evaluated the perspectives for development of the industrial Internet in the Russian economy.


Computers ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 28 ◽  
Author(s):  
Salvatore Cavalieri ◽  
Marco Giuseppe Salafia

In the context of Industry 4.0, lot of effort is being put to achieve interoperability among industrial applications. As the definition and adoption of communication standards are of paramount importance for the realization of interoperability, during the last few years different organizations have developed reference architectures to align standards in the context of the fourth industrial revolution. One of the main examples is the reference architecture model for Industry 4.0, which defines the asset administration shell as the corner stone of the interoperability between applications managing manufacturing systems. Inside Industry 4.0 there is also so much interest behind the standard open platform communications unified architecture (OPC UA), which is listed as the one recommendation for realizing the communication layer of the reference architecture model. The contribution of this paper is to give some insights behind modelling techniques that should be adopted during the definition of OPC UA Information Model exposing information of the very recent metamodel defined for the asset administration shell. All the general rationales and solutions here provided are compared with the current OPC UA-based existing representation of asset administration shell provided by literature. Specifically, differences will be pointed out giving to the reader advantages and disadvantages behind each solution.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Jason R.C. Nurse ◽  
Razvan Nicolescu ◽  
Michael Huth ◽  
...  

The world is currently experiencing the fourth industrial revolution driven by the newest wave of digitisation in the manufacturing sector. The term Industry 4.0 (I4.0) represents at the same time: a paradigm shift in industrial production, a generic designation for sets of strategic initiatives to boost national industries, a technical term to relate to new emerging business assets, processes and services, and a brand to mark a very particular historical and social period. I4.0 is also referred to as Industrie 4.0 the New Industrial France, the Industrial Internet, the Fourth Industrial Revolution and the digital economy. These terms are used interchangeably in this text. The aim of this article is to discuss major developments in this space in relation to the integration of new developments of IoT and cyber physical systems in the digital economy, to better understand cyber risks and economic value and risk impact. The objective of the paper is to map the current evolution and its associated cyber risks for the digital economy sector and to discuss the future developments in the Industrial Internet of Things and Industry 4.0.


Author(s):  
Marcelo Teixeira de Azevedo ◽  
Alaide Barbosa Martins ◽  
Sergio Takeo Kofuji

Nowadays, there is a digital transformation in industry, which is being referred to as a new revolution, known as the fourth industrial revolution. Today, we are in the fourth industrial revolution, which strongly supports itself at enabling technologies, such as: Internet of Things (IoT), big data, cyber-physical systems (CPS) and cloud computing. These technologies are working cooperatively to promote a digital transformation in the forms of: Industry 4.0, Industrial Internet Consortium and Advanced Manufacturing. To meet these needs and as a proof of concept, a platform for digital transformation for a water issue is proposed with the objective of achieving an efficient management of resources linked to rational use of water. For the platform definition, a survey was performed of the process of a water treatment plant from the third industrial revolution and improved the process by applying the concepts of digital transformation to improve the new platform.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3298 ◽  
Author(s):  
Marianne Silva ◽  
Elton Vieira ◽  
Gabriel Signoretti ◽  
Ivanovitch Silva ◽  
Diego Silva ◽  
...  

In the last decade, the growth of the automotive market with the aid of technologies has been notable for the economic, automotive and technological sectors. Alongside this growing recognition, the so called Internet of Intelligent Vehicles (IoIV) emerges as an evolution of the Internet of Things (IoT) applied to the automotive sector. Closely related to IoIV, emerges the concept of Industrial Internet of Things (IIoT), which is the current revolution seen in industrial automation. IIoT, in its turn, relates to the concept of Industry 4.0, that is used to represent the current Industrial Revolution. This revolution, however, involves different areas: from manufacturing to healthcare. The Industry 4.0 can create value during the entire product lifecycle, promoting customer feedback, that is, having information about the product history throughout it is life. In this way, the automatic communication between vehicle and factory was facilitated, allowing the accomplishment of different analysis regarding vehicles, such as the identification of a behavioral pattern through historical driver usage, fuel consumption, maintenance indicators, so on. Thus, allowing the prevention of critical issues and undesired behaviors, since the automakers lose contact with the vehicle after the purchase. Therefore, this paper aims to propose a customer feedback platform for vehicle manufacturing in Industry 4.0 context, capable of collecting and analyzing, through an OBD-II (On-Board Diagnostics) scanner, the sensors available by vehicles, with the purpose of assisting in the management, prevention, and mitigation of different vehicular problems. An intercontinental evaluation conducted between Brazil and Italy locations shown the feasibility of platform and the potential to use in order to improve the vehicle manufacturing process.


2021 ◽  
Vol 11 (8) ◽  
pp. 3568
Author(s):  
Amr T. Sufian ◽  
Badr M. Abdullah ◽  
Muhammad Ateeq ◽  
Roderick Wah ◽  
David Clements

The fourth industrial revolution is the transformation of industrial manufacturing into smart manufacturing. The advancement of digital technologies that make the trend Industry 4.0 are considered as the transforming force that will enable this transformation. However, Industry 4.0 digital technologies need to be connected, integrated and used effectively to create value and to provide insightful information for data driven manufacturing. Smart manufacturing is a journey and requires a roadmap to guide manufacturing organizations for its adoption. The objective of this paper is to review different methodologies and strategies for smart manufacturing implementation to propose a simple and a holistic roadmap that will support the transition into smart factories and achieve resilience, flexibility and sustainability. A comprehensive review of academic and industrial literature was preformed based on multiple stage approach and chosen criteria to establish existing knowledge in the field and to evaluate latest trends and ideas of Industry 4.0 and smart manufacturing technologies, techniques and applications in the manufacturing industry. These criteria are sub-grouped to fit within various stages of the proposed roadmap and attempts to bridge the gap between academia and industry and contributes to a new knowledge in the literature. This paper presents a conceptual approach based on six stages. In each stage, key enabling technologies and strategies are introduced, the common challenges, implementation tips and case studies of industrial applications are discussed to potentially assist in a successful adoption. The significance of the proposed roadmap serve as a strategic practical tool for rapid adoption of Industry 4.0 technologies for smart manufacturing and to bridge the gap between the advanced technologies and their application in manufacturing industry, especially for SMEs.


2021 ◽  
Vol 5 (2) ◽  
pp. 49-58
Author(s):  
Kremena Marinova-Kostova ◽  
Ivaylo Kostov

Introduction. Industry 4.0 is a concept that is considered a new phase in the Industrial Revolution, closely related to the application of information technologies and the digital transformation of manufacturing. The main purpose is to be created a more holistic and more connected ecosystem, focused on supply chain management in industrial companies. Implementation of solutions in Industry 4.0 is mostly related to the concept of the Internet of Things (IoT). Mass deployment of this type of technology in industrial enterprises is the basis of the so-called Industrial Internet of Things (IIoT). Achieving interoperability in the IIoT requires the combination of two technologies: the Internet of Things and the Internet of People. Aim and tasks. This article describes the implementation of the concept of the Internet of Things in industrial enterprises, as a key technology factor for developing Industry 4.0. Results. A brief overview of the evolution of industrial production - from the beginning of the Industrial Revolution to the emergence of Industry 4.0 is made. The main principles for implementing Industry 4.0 solutions ensure that the entire production process is computerized. Industry 4.0 solutions are mostly associated with the concept of the Internet of Things (IoT) whose definition and essence are obtained in this article. Based on the various concepts of the IoT are presented solutions that can be used in the industry, namely: in consumer devices in technology used in public organizations in infrastructure applications in industrial applications, also called the Industrial Internet of Things (IIoT). Therefore, we can say that there is a significant potential for improving production processes as regards: optimization of operations, forecasting equipment support, inventory optimization, improving workers' security, shipping chain optimization, etc. Conclusions. The application of the Internet of Things in enterprises is an important and decisive step in the process of their digital transformation and transition to Industry 4.0. The interaction between humans and machines, carried out through Internet technologies, leads to the emergence of the Internet of Everything, which will be a basic concept in industrial production in the coming years. However, the role of man in the production process should not be completely eliminated, but solutions should be sought that support and intellectualize his work.


Sign in / Sign up

Export Citation Format

Share Document