scholarly journals Brittle Creep and Viscoelastic Creep in Lower Palaeozoic Shales from the Baltic Basin, Poland

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4633
Author(s):  
Przemyslaw Michal Wilczynski ◽  
Andrzej Domonik ◽  
Pawel Lukaszewski

The paper analyses the mechanical properties of shales from the Baltic Basin, focusing on creep strain in conditions of variable stress and elevated temperature (85 °C). Rock samples were collected from drill cores from various depths between 3600–4000 m. A series of creep tests was performed using a triaxial apparatus in simulated pressure and temperature conditions in the reservoir. The creep tests were conducted at variable levels of differential stress in variable time intervals. The laboratory experiments were performed in order to study brittle and viscoelastic creep proceeding in time in shales rich in organic matter and clay minerals. Creep compliance of shale formations rich in organic matter influences the success of hydraulic fracturing procedures, as well as migration of natural gas during exploitation. Laboratory characteristics of geomechanical properties (compressive strength, strain and elastic moduli) is crucial for planning natural gas exploitation from unconventional resources. The results indicate that the level of constant differential stress and creep time significantly influence the mechanical properties of shales. The paper presents the differences between brittle and viscoelastic strain registered during creep tests at variable stress conditions and time intervals. In viscoelastic creep tests, creep strain is over two times larger in the second stage of creep in comparison to the magnitude of strain registered in the first stage. In brittle creep tests, axial strain in the first creep stage is two times larger than in viscoelastic creep tests in the second stage. Based on the experiments, elastic parameters, i.e., Young’s modulus and Poisson’s ratio, have been determined for each of the analysed samples. In brittle creep tests, Young’s modulus is smaller than in viscoelastic creep tests. In viscoelastic creep tests Young’s modulus increases in successive stages. Whereas Poisson’s ratio is larger for samples from brittle creep tests than for samples from viscoelastic creep tests and does not change with subsequent creep stages in viscoelastic creep tests.

Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. MR89-MR96 ◽  
Author(s):  
Céline Mallet ◽  
Beatriz Quintal ◽  
Eva Caspari ◽  
Klaus Holliger

We estimate attenuation at subseismic frequencies from an experimental creep test performed on a thermally cracked water-saturated glass sample. The time-dependent axial stress and strain rates are used to infer the attenuation and Young’s modulus as functions of frequency. Attenuation is characterized by a pronounced frequency dependence between [Formula: see text] and [Formula: see text]. A corresponding frequency-dependent behavior of the Young’s modulus is observed with an increase from 60 to 70 GPa, which is consistent with the measured static and ultrasonic values. These observations are interpreted as being due to fluid flow between interconnected cracks in the mesoscopic scale range. To test this hypothesis, we compare the analytical characteristic frequency for the presumed mesoscopic squirt-type flow with its experimental counterpart. We also compare the experimentally observed attenuation characteristics with results of numerical simulations. For the latter, a thin section of the cracked glass sample has been digitized to provide essential information with regard to the geometry of the crack network. Together with the known physical properties of the intact glass matrix, this then allows for deriving a first-order 2D poroelastic model for the cracked sample based on Biot’s quasi-static equations.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


1981 ◽  
Vol 6 ◽  
Author(s):  
J.R. Mclaren ◽  
R.W. Davidge ◽  
I. Titchell ◽  
K. Sincock ◽  
A. Bromley

ABSTRACTHeating to temperatures up to 500°C, gives a reduction in Young's modulus and increase in permeability of granitic rocks and it is likely that a major reason is grain boundary cracking. The cracking of grain boundary facets in polycrystalline multiphase materials showing anisotropic thermal expansion behaviour is controlled by several microstructural factors in addition to the intrinsic thermal and elastic properties. Of specific interest are the relative orientations of the two grains meeting at the facet, and the size of the facet; these factors thus introduce two statistical aspects to the problem and these are introduced to give quantitative data on crack density versus temperature. The theory is compared with experimental measurements of Young's modulus and permeability for various rocks as a function of temperature. There is good qualitative agreement, and the additional (mainly microstructural) data required for a quantitative comparison are defined.


2020 ◽  
Vol 12 ◽  
Author(s):  
S.V. Kontomaris ◽  
A. Malamou ◽  
A. Stylianou

Background: The determination of the mechanical properties of biological samples using Atomic Force Microscopy (AFM) at the nanoscale is usually performed using basic models arising from the contact mechanics theory. In particular, the Hertz model is the most frequently used theoretical tool for data processing. However, the Hertz model requires several assumptions such as homogeneous and isotropic samples and indenters with perfectly spherical or conical shapes. As it is widely known, none of these requirements are 100 % fulfilled for the case of indentation experiments at the nanoscale. As a result, significant errors arise in the Young’s modulus calculation. At the same time, an analytical model that could account complexities of soft biomaterials, such as nonlinear behavior, anisotropy, and heterogeneity, may be far-reaching. In addition, this hypothetical model would be ‘too difficult’ to be applied in real clinical activities since it would require very heavy workload and highly specialized personnel. Objective: In this paper a simple solution is provided to the aforementioned dead-end. A new approach is introduced in order to provide a simple and accurate method for the mechanical characterization at the nanoscale. Method: The ratio of the work done by the indenter on the sample of interest to the work done by the indenter on a reference sample is introduced as a new physical quantity that does not require homogeneous, isotropic samples or perfect indenters. Results: The proposed approach, not only provides an accurate solution from a physical perspective but also a simpler solution which does not require activities such as the determination of the cantilever’s spring constant and the dimensions of the AFM tip. Conclusion: The proposed, by this opinion paper, solution aims to provide a significant opportunity to overcome the existing limitations provided by Hertzian mechanics and apply AFM techniques in real clinical activities.


2011 ◽  
Vol 695 ◽  
pp. 170-173 ◽  
Author(s):  
Voravadee Suchaiya ◽  
Duangdao Aht-Ong

This work focused on the preparation of the biocomposite films of polylactic acid (PLA) reinforced with microcrystalline cellulose (MCC) prepared from agricultural waste, banana stem fiber, and commercial microcrystalline cellulose, Avicel PH 101. Banana stem microcrystalline cellulose (BS MCC) was prepared by three steps, delignification, bleaching, and acid hydrolysis. PLA and two types of MCC were processed using twin screw extruder and fabricated into film by a compression molding. The mechanical and crystalline behaviors of the biocomopsite films were investigated as a function of type and amount of MCC. The tensile strength and Young’s modulus of PLA composites were increased when concentration of MCC increased. Particularly, banana stem (BS MCC) can enhance tensile strength and Young’s modulus of PLA composites than the commercial MCC (Avicel PH 101) because BS MCC had better dispersion in PLA matrix than Avicel PH 101. This result was confirmed by SEM image of fractured surface of PLA composites. In addition, XRD patterns of BS MCC/PLA composites exhibited higher crystalline peak than that of Avicel PH 101/PLA composites


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Chuen-Lin Tien ◽  
Tsai-Wei Lin

This paper proposes a measuring apparatus and method for simultaneous determination of the thermal expansion coefficient and biaxial Young’s modulus of indium tin oxide (ITO) thin films. ITO thin films simultaneously coated on N-BK7 and S-TIM35 glass substrates were prepared by direct current (DC) magnetron sputtering deposition. The thermo-mechanical parameters of ITO thin films were investigated experimentally. Thermal stress in sputtered ITO films was evaluated by an improved Twyman–Green interferometer associated with wavelet transform at different temperatures. When the heating temperature increased from 30 °C to 100 °C, the tensile thermal stress of ITO thin films increased. The increase in substrate temperature led to the decrease of total residual stress deposited on two glass substrates. A linear relationship between the thermal stress and substrate heating temperature was found. The thermal expansion coefficient and biaxial Young’s modulus of the films were measured by the double substrate method. The results show that the out of plane thermal expansion coefficient and biaxial Young’s modulus of the ITO film were 5.81 × 10−6 °C−1 and 475 GPa.


2021 ◽  
Vol 54 (3) ◽  
pp. 1149-1149
Author(s):  
Zhibo Duan ◽  
Frédéric Skoczylas ◽  
Chuanrui Wang ◽  
Jean Talandier

Sign in / Sign up

Export Citation Format

Share Document