scholarly journals Refining Estimates of Fuel-Cycle Greenhouse-Gas Emission Reductions Associated with California’s Clean Vehicle Rebate Project with Program Data and Other Case-Specific Inputs

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4640
Author(s):  
Nicholas Pallonetti ◽  
Brett D. H. Williams

This work refines and updates estimates of the fuel-cycle greenhouse-gas (GHG) emission impacts of electric vehicles (EVs) rebated in California. Emissions are estimated using disaggregated data from the start of the rebate program through August 2018 (N = 269,902 participants) and factors that characterize fuel use and fuel life-cycle carbon intensity. GHG reductions are calculated for the first year of vehicle operation and subsequently scaled to reflect various operational timeframes. GHG reduction estimates over the first year of vehicle ownership total approximately 855 thousand metric tons of CO2-equivalent emissions, or 3.2 tons per vehicle. For nonfleet individuals, 54% of reductions are associated with “Rebate-Essential” participants who were most highly influenced by the rebate to purchase/lease. Comparing the estimated warranty-life benefit of 7.9 million tons of GHG reductions to USD 603 million in corresponding rebates results in USD 76 of state incentives per metric ton reduced over the first 100,000/150,000 miles of rebated vehicle use. Uncertainty in estimates presents opportunities for further refinement using additional participant-specific, time-variant, or otherwise detailed inputs. Nevertheless, the contributions of this work increased average first-year GHG reductions per vehicle by 35–45% compared to previous work, demonstrating that use of program-derived data can enhance the understanding of EV impacts.

2018 ◽  
Vol 10 (7) ◽  
pp. 2492 ◽  
Author(s):  
Tianyi Cai ◽  
Degang Yang ◽  
Xinhuan Zhang ◽  
Fuqiang Xia ◽  
Rongwei Wu

China’s carbon intensity (CI) reduction target in 2030 needs to be allocated to each province in order to be achieved. Thus, it is of great significance to study the vertical linkage of CI change between China and its provinces. The existing research on the vertical linkage focuses more on energy-related economic sectors in China; however, attention has not been paid to China’s animal husbandry (AH) sector, although the role of the China’s AH sector in greenhouse gas (GHG) reduction is increasingly important. This study firstly established a vertical linkage of change in greenhouse gas emission intensity of the animal husbandry sector (AHGI) between China and its 31 provinces based on the logarithmic mean Divisia index (LMDI) decomposing method from the perspective of combining emission reduction with economic development, and quantified the contributions of each province and its three driving factors of environmental efficiency (AHEE), productive efficiency (AHPE), and economic share (AHES) to reducing China’s AHGI during the period of 1997–2016. The main results are: (1) The AHGI of China decreased from 5.49 tCO2eq/104 yuan in 1997 to 2.59 tCO2eq/104 in 2016, showing a 75.25% reduction. The AHGI in 31 provinces also declined and played a positive role in promoting the reduction of national AHGI, but there were significant inter-provincial differences in the extent of the contribution. Overall, the provinces with higher emission levels contributed the most to the reduction of China’s AHGI; (2) The AHPE and AHEE factors in 31 provinces cumulatively contributed to the respective 68.17% and 11.78% reduction of China’s AHGI, while the AHES factors of 31 provinces cumulatively inhibited the 4.70% reduction. Overall, the AHPE factor was the main driving factor contributing to the reduction of China’s AHGI. In the future, improving the level of AHEE through GHG emissions reduction technology and narrowing the inter-provincial gap of the level of AHPE are two important paths for promoting the reduction of China’s AHGI.


Soil Research ◽  
2018 ◽  
Vol 56 (7) ◽  
pp. 724 ◽  
Author(s):  
Graeme D. Schwenke ◽  
Philippa M. Brock ◽  
Bruce M. Haigh ◽  
David F. Herridge

To contribute to national greenhouse gas emissions (GHG) reduction targets, grain growers need strategies that minimise emissions associated with grain production. We used life cycle assessments (LCAs) with field-measured production inputs, grain yields and proteins, legume nitrogen (N2) fixation, and soil nitrous oxide (N2O) and methane (CH4) emissions, to explore mitigation strategies in 3-year crop sequences in subtropical Australia. The sequences were: canola plus 80 kg/ha fertiliser nitrogen (80N)–wheat 85N–barley 65N (CaNWtNBaN), chickpea 0N–wheat 85N–barley 5N (CpWtNBa), chickpea 0N–wheat 5N–chickpea 5N (CpWtCp), and chickpea 0N–sorghum 45N (CpSgN). We also assessed the impacts of split fertiliser N application and urea coated with DMPP, a nitrification inhibitor, on the LCA for the CaNWtNBaN sequence. Total pre-farm plus on-farm GHG emissions varied between 915 CO2-e/ha (CpSgN) and 1890 CO2-e/ha (CaNWtNBaN). Cumulative N2O emitted over the 3-year study varied between 0.479 kg N2O-N/ha (CpWtCp) and 1.400 kg N2O-N/ha (CaNWtNBaN), which constituted 24–44% of total GHG emissions. Fertiliser production accounted for 20% (CpSgN) to 30% (CaNWtNBaN) of total emissions. An extra 4.7 kg CO2-e/ha was emitted for each additional kg N/ha of applied N fertiliser. Three-year CH4 emissions ranged from −1.04 to −0.98 kg CH4-C/ha. Split N and DMPP strategies could reduce total GHG emissions of CaNWtNBaN by 17 and 28% respectively. Results of the study indicate considerable scope for reducing the carbon footprint of subtropical, dryland grains cropping in Australia.


Author(s):  
Veronika Solilová ◽  
Danuše Nerudová

The most important drivers of increasing greenhouse gas emissions are increasing world’s population, economic development resulting in higher level of productions and consumption, but also unanticipated increases in the energy intensity of GDP and in the carbon intensity of energy. The EU committed to reduce their greenhouse gas emissions by 20% until 2020 or 40% until 2030 compared to 1990 levels of the Kyoto Protocol. The Czech Republic enlarged EU in 2004 as a country from Eastern Europe where usually the heavy industries or agriculture prevail over other sectors. The aim of the paper was an evaluation of the development of greenhouse gas emissions and related aspects in the industry of the Czech Republic. Based on the results was concluded that although greenhouse gas emissions of the Czech Republic are deeply below the Kyoto targets, there are areas for improvements e.g. in case of energy intensities, as well as in case of carbon intensity and carbon productivity, where the Czech Republic reaches worse results than the EU28. Therefore is recommended to decrease greenhouse gas emission and increase gross value added generated by each NACE sector. Both those factors will impact on improvement of energy intensity, carbon productivity as well as greenhouse gas emissions per capita.


2021 ◽  
Author(s):  
Jérôme Mariette ◽  
Odile Blanchard ◽  
Olivier Berné ◽  
Tamara Ben-Ari

AbstractResearch institutions are bound to contribute to greenhouse gas emission (GHG) reduction efforts for several reasons. First, part of the scientific community’s research deals with climate change issues. Second, scientists contribute to students’ education : they must be consistent and role models. Third the literature on the carbon footprint of researchers points to the high level of some individual footprints. In a quest for consistency and role models, scientists, teams of scientists or universities have started to quantify their carbon footprints and debate on reduction options. Indeed, measuring the carbon footprint of research activities requires tools designed to tackle its specific features. In this paper, we present an open-source web application, GES 1point5, developed by an interdisciplinary team of scientists from several research labs in France. GES 1point5 is specifically designed to estimate the carbon footprint of research activities in France. It operates at the scale of research labs, i.e., laboratoires, which are the social structures around which research is organized in France and the smallest decision making entities in the French research system. The application allows French research labs to compute their own carbon footprint along a standardized, open protocol. The data collected in a rapidly growing network of labs will be used as part of the Labos 1point5 project to estimate France’s research carbon footprint. At the time of submitting this manuscript, 89 research labs had engaged with GES 1point5 to estimate their greenhouse gas emissions. We expect that an international adoption of GES 1point5 (adapted to fit domestic specifics) could contribute to establishing a global understanding of the drivers of the research carbon footprint worldwide and the levers to decrease it.Availability and implementationGES 1point5 is available online for French research labs at http://labos1point5.org/ges-1point5 and source code can be downloaded from the GitLab platform at https://framagit.org/labos1point5/l1p5-vuejs.


2020 ◽  
Vol 12 (7) ◽  
pp. 2774
Author(s):  
Joowook Kim ◽  
Jemin Myoung ◽  
Hyunwoo Lim ◽  
Doosam Song

Energy efficiency policies are made to reduce the energy necessary to achieve a given level of indoor heating and to decrease the greenhouse gas emission worldwide. National and state regulators routinely tighten the energy efficiency building code appliance standards. In particular, for low-income households, the government has been implementing an energy efficiency program, and the most common measures include furnace replacement, attic and wall insulation, and infiltration reduction. The belief that the energy efficiency programs are beneficial and lead to energy reductions often fails, which is known as the ‘efficiency gap.’ This paper analyzed the effect of input data in calculating the energy savings of the energy efficiency program for low-income households as a cause of the energy efficiency gap in energy efficiency treatments for low-income households. According to the retrofit of the low-income household, the energy saving effect predicted through the input data of detailed measurement was 65%, which was higher than 41% of the conventional prediction method (walk-through audit). The resulting greenhouse gas (GHG) reduction effect was also the same as the energy savings, and the results predicted by the existing prediction methods were less predicted than the detailed measurement results.


2015 ◽  
Vol 73 (1) ◽  
pp. 137-143 ◽  
Author(s):  
H.-T. Liu ◽  
X.-J. Kong ◽  
G.-D. Zheng ◽  
C.-C. Chen

Sewage sludge is a considerable source of greenhouse gas (GHG) emission in the field of organic solid waste treatment and disposal. In this case study, total GHG emissions from sludge anaerobic digestion, including direct and indirect emissions as well as replaceable emission reduction due to biogas being reused instead of natural gas, were quantified respectively. The results indicated that no GHG generation needed to be considered during the anaerobic digestion process. Indirect emissions were mainly from electricity and fossil fuel consumption on-site and sludge transportation. Overall, the total GHG emission owing to relative subtraction from anaerobic digestion rather than landfill, and replaceable GHG reduction caused by reuse of its product of biogas, were quantified to be 0.7214 (northern China) or 0.7384 (southern China) MgCO2 MgWS−1 (wet sludge).


Sign in / Sign up

Export Citation Format

Share Document