scholarly journals Capsule Vehicle Dynamics Based on Levitation Coil Design Using Equivalent Model of a Sidewall Electrodynamic Suspension System

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4979
Author(s):  
Ranhee Yoon ◽  
Birhan Abebaw Negash ◽  
Wonhee You ◽  
Jungyoul Lim ◽  
Jinho Lee ◽  
...  

A levitation system based on sidewall electrodynamic suspension (EDS) is considered for a capsule vehicle, which is a next-generation high-speed transportation system currently being studied. This levitation system does not require controlling of the gap between the guideway and the vehicle on which the superconducting electromagnet is mounted. However, when the vehicle is operated in a levitated state, the ride comfort is worse than that of the levitation system based on electromagnetic suspension (EMS), making it necessary to develop methods that can ensure good riding comfort. In addition, because the EDS system is complex and nonlinear with a combination of electromagnetics and mechanical dynamics, it is complicated to analyze the dynamic characteristics of the capsule vehicle, and the corresponding numerical analysis is time-consuming. Therefore, to easily understand the running dynamics of a capsule vehicle in the sidewall EMS system, the magnetic suspension characteristics corresponding to the primary suspension are simply modeled by considering the levitation stiffness in the vertical direction and the guidance stiffness in the lateral direction, similar to that in the case of the mechanical suspension. In this study, mathematical models of the levitation and guidance stiffnesses with respect to the speed and position of a vehicle body running at high speeds in a levitated state in the sidewall EDS system were derived for three design proposals of the levitation coil. The dynamic behavior of the vehicle based on the three design proposals was investigated by simulating a capsule vehicle model with 15 degrees of freedom.

2018 ◽  
Vol 4 (2) ◽  
pp. 5-18 ◽  
Author(s):  
Alexander V. Kireev ◽  
Nikolay M. Kozhemyaka ◽  
Gennady N. Kononov

Background: The new scope of application for vehicles equipped with magnetic suspension is the fright container transportation. In order to realize the transit potential of the country, the increase in mean speed of the container trains is required. Aim: The present work aims to explore the possibilities to develop the high-speed transport system equipped with magnetic suspension for container transportation along Euro-Asian land bridge. Methods: As the research tools used methods of situational analysis, computer modeling, transport geography, technical and economic analysis. Results: The market analysis results of the transit container transportation have shown that the major challenge for Russian transit development is the constrained traffic capacity of the existing transport corridors. The drastic solution to the problem can be the construction of a new high-speed transport system. The following factors determining the conditions for the creation of the new transport system have been identified: use of transport possibilities of the Azov-Black Sea basin; ensuring accessibility of the northern territories; development of technical solutions for the creation of a transport system with low-cost infrastructure. The combined traction levitation system has been developed based on the extremely simple design of the linear switched reluctance motor. The experimental researches of the full-functional physical model of the transport platform have been performed. The assessment of investment project efficiency has shown that despite the large start-up investment in the track infrastructure, the project has positive economic effect. Practical importance: The computer model of the combined traction levitation system based on the linear switched reluctance motor has been designed. The concept of constructing a new transport system is proposed, taking into account the characteristics of the proposed operational region in poorly developed territories. The high-speed route has been proposed connecting the Azov-Black sea basin with the Pacific coastline and completely passing through the territories of Russia including some northern regions. The transit potential assessment has shown that due to the transit time reduction it is possible to attract the container freights with traffic volume of 1,52 million in twenty-foot equivalentunit.


Author(s):  
Beibei Liu ◽  
Lin Xu ◽  
Zhen Zhao ◽  
Mohamed A. A. Abdelkareem ◽  
Junyi Zou ◽  
...  

Active suspension can adapt itself to the rigidity and the damping characteristics based on the vehicle dynamic state and the road condition, making the suspension in the best state of shock absorbing, which can increase the handling stability, the ride comfort and the passing ability of vehicles. As for strikingly rugged roads like off-road conditions, the traditional active suspension can hardly balance the contradiction between the wheel adhesion and the vertical accelerated speed of the body. In this paper, an active suspension in which the position of the vehicle body can be adjusted is proposed. In the proposed suspension, a series of electric cylinders are installed, which can actively adjust the position between the vehicle body and the suspension in order to achieve the purpose of controlling the relative body-wheels position. In this manner, AMESim is used to set up three suspension designs which include suspension supporter adaptation equipment with different locations in the system. Through simulation analysis, the paper has explored the feasibility of the vehicle attitude control of the three suspension designs under off-road conditions. The results proved that the active suspension system with adjustable body position can restrain the body roll or pitch efficiently in which this technology can be applied to the body attitude control when ORVs are at high speed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jungyoul Lim ◽  
Chang-Young Lee ◽  
Ye Jun Oh ◽  
Jeong-Min Jo ◽  
Jin-Ho Lee ◽  
...  

AbstractHyperloop is a new concept of ground transportation. In Hyperloop, travelling occurs in near-vacuum tubes under 0.001 atm at a subsonic speed of up to 1200 km/h. During acceleration to and driving at a subsonic speed, magnetic levitation is employed. Thus far, various levitation technologies in existing high-speed maglev trains have been considered. Among those technologies, superconducting (SC) electrodynamic suspension (EDS) is a highly effective levitation system for Hyperloop owing to its advantages of a large levitation gap, levitation stability, and control being unnecessary. However, analyzing an EDS system requires the electromagnetic transient analysis of complex three-dimensional (3D) features, and its computational load generally limits the use of numerical methods, such as the 3D finite element method (FEM) or dynamic circuit theory. In this study, a novel model that can rapidly and accurately calculate the frequency-dependent equivalent inductance was developed. The developed model was then applied to design an EDS system using the decoupled resistance-inductance equations of levitation coils. Next, levitation coils of SC-EDS were designed and analyzed for use in Hyperloop. The obtained results were compared with the FEM results to validate the developed model. In addition, the model was experimentally validated by measuring currents induced by moving pods.


2017 ◽  
Vol 3 (4) ◽  
pp. 5-41
Author(s):  
Alexander V Kireev ◽  
Nikolay M Kozhemyaka ◽  
Gennadiy N Kononov

The new scope of application for vehicles equipped with magnetic suspension is the fright container transportation. In order to realise the transit potential of the country, the increase in mean speed of the container trains is required. Objective. The purpose of the work is to explore the possibilities to develop the highspeed transport system equipped with magnetic suspension for container transportation along Eurasian land bridge. Methods. The following methods and analysis have been used as research instruments: case study, computer modeling, transport geography and technical and economic analysis. Results. The market analysis results of the transit container transportation have shown that the major challenge for Russian transit development is the constrained traffic capacity of the existing transport corridors. The drastic solution of the problem can be the construction of a new high-speed transport system. The following factors determining the conditions for the creation of the new transport system have been identified: the use of the Azov-Black sea basin transportation facilities, provision of the accessibility of the northern areas; the development of technical solutions ensuring the design of the transport system with low cost infrastructure. The combined traction levitation system has been developed based on the extremely simple design of the linear switched reluctance motor. The experimental researches of the full-functional physical model of the transport platform have been performed. The assessment of investment project efficiency has shown that despite large start-up investment in the track infrastructure, the project has positive economic effect. Practical importance. The computer model of the combined traction levitation system based on the linear switched reluctance motor has been designed. The concept of the new transport system construction has been introduced taking into account the characteristics of the supposed operating test sites in poorly developed areas. The high-speed route has been proposed connecting the Azov-Black sea basin with the Pacific coastline and completely passing through the territories of Russia including some northern regions. The transit potential assessment has shown that due to the transit time reduction it is possible to attract the container freights with traffic volume of 1.52 million in twenty-pounds equivalent.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6549
Author(s):  
Tomasz Kublin ◽  
Lech Grzesiak ◽  
Paweł Radziszewski ◽  
Marcin Nikoniuk ◽  
Łukasz Ordyszewski

In high-speed magnetic railways, it is necessary to create the forces that lift the train. This effect is achieved by using active (EMS) or passive (EDS) magnetic systems. In a passive system, suspension systems with permanent magnets arranged in a Halbach array can be used. In this paper, an original Halbach array with various alternately arranged horizontally and vertically magnetized magnets is proposed. Correctly selected geometry allows us to obtain higher values of levitation forces and lower braking forces in relation to a system with identical horizontally and vertically magnetized elements. The effect of such a shape of the magnetic arrangement is the reduction of instantaneous power consumption while traveling due to the occurrence of lower braking forces. In order to perform a comparative analysis of the various geometries of the Halbach array, a simulation model was developed in the ANSYS Maxwell program. The performed calculations made it possible to determine the optimal dimensions of horizontally and vertically magnetized elements. The results of calculations of instantaneous power savings for various cruising speeds are also included.


Author(s):  
Zai-Wei Li ◽  
Xiao-Zhou Liu ◽  
Hong-Yao Lu ◽  
Yue-Lei He

The deformation of longitudinally coupled prefabricated slab track (LCPST) due to high temperature may lead to a reduction in ride comfort and safety in high-speed rail (HSR) operation. It is thus critical to understand and track the development of such defects. This study develops an online monitoring system to analyze LCPST deformation at different slab depths under various temperatures. The trackside system, powered by solar energy with STM8L core that is ultra-low in energy consumption, is used to collect data of LCPST deformation and temperature level uninterruptedly. With canonical correlation analysis, it is found that LCPST deformation presents similar periodic variation to yearly temperature fluctuation and large longitudinal force may be generated as heat accumulates in summer, thereby causing track defects. Then the distribution of temperature and deformation data is categorized based on fuzzy c-means clustering. Through the distribution analysis, it is suggested that slab inspection can be shortened to 6 hours, i.e. from 10:00 am to 4:00 pm, reducing 14.3% track inspection workload from the current practice. The price of workload reduction is only a 2% chance of missed detection of slab deformation. The finding of this research can be used to enhance LCPST monitoring efficiency and reduce interruption to HSR operation, which is an essential step in promoting reliable and cost-effective track service.


2017 ◽  
Vol 45 ◽  
pp. 1760020
Author(s):  
Henrique Linares ◽  
Carlos Frajuca ◽  
Fabio S. Bortoli ◽  
Givanildo A. Santos ◽  
Francisco Y. Nakamoto

This work aims to design a magnetic suspension for an experiment to measure gravitys velocity. Such device must rotate two objects symmetrically with the greatest mass and largest radius as possible, at the speed of [Formula: see text], which means this device falls into the high-speed machines category. The guidelines and solutions proposed in this paper constitute a contribution to this class of engineering problems and were based on an extensive literature search, contacts with experts, the tutors and author’s experience, as well as on experimental results. The main solution proposed is a hybrid bearing that combines a radial passive magnetic bearing with an axial sliding bearing, here called MPS (Magnetic Passive and Sliding) bearing.


Sign in / Sign up

Export Citation Format

Share Document