scholarly journals PMSM Torque-Speed-Efficiency Map Evaluation from Parameter Estimation Based on the Stand Still Test

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6804
Author(s):  
Carlos Candelo-Zuluaga ◽  
Jordi-Roger Riba ◽  
Antoni Garcia

During the last decades, a wide variety of methods to estimate permanent magnet synchronous motor (PMSM) performance have been developed. These methodologies have several advantages over conventional procedures, saving time and economic costs. This paper presents a new methodology to estimate the PMSM torque-speed-efficiency map based on the blocked rotor test using a single-phase voltage source. The methodology identifies the stator flux linkage depending on the current magnitude and angle while providing a detailed estimation of the iron losses. The torque-speed-efficiency map provides detailed information of the motor efficiency along its operating region, including the nominal conditions and the maximum power envelope. The proposed methodology does not require knowing the geometry of the machine to perform any load test, and it also avoids using expensive measurement devices and a complex experimental setup. Moreover, the proposed method allows the PMSM performance to be reproduced by applying different control strategies, which is useful when testing different drives. The method does not require the application of any optimization algorithm, thus simplifying and speeding up the process to determine the performance. Experimental validation is carried out by comparing motor performances obtained through the proposed method with those obtained by means of a conventional experimental method and against finite element analysis (FEA).

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3904
Author(s):  
Ji-Chang Son ◽  
Myung-Ki Baek ◽  
Sang-Hun Park ◽  
Dong-Kuk Lim

In this paper, an improved immune algorithm (IIA) was proposed for the torque ripple reduction optimal design of an interior permanent magnet synchronous motor (IPMSM) for a fuel cell electric vehicle (FCEV) traction motor. When designing electric machines, both global and local solutions of optimal designs are required as design result should be compared in various aspects, including torque, torque ripple, and cogging torque. To lessen the computational burden of optimization using finite element analysis, the IIA proposes a method to efficiently adjust the generation of additional samples. The superior performance of the IIA was verified through the comparison of optimization results with conventional optimization methods in three mathematical test functions. The optimal design of an IPMSM using the IIA was conducted to verify the applicability in the design of practical electric machines.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2154 ◽  
Author(s):  
Dazhi Wang ◽  
Tianqing Yuan ◽  
Xingyu Wang ◽  
Xinghua Wang ◽  
Yongliang Ni

In order to improve the performance of the servo control system driven by a permanent magnet synchronous motor (PMSM) under novel direct torque control (NDTC), which, utilizing composite active vectors, fixed sector division criterion, is proposed in this paper. The precondition of the accurate compensations of torque and flux errors is that the sector where the stator flux linkage is located can be determined accurately. Consequently, the adaptive sector division criterion is adopted in NDTC. However, the computation burden is inevitably increased with the using of the adaptive part. On the other hand, the main errors can be compensated through SV-DTC (DTC-utilizing single active vector), while another active vector applied in NDTC can only supply the auxiliary error compensation. The relationships of the two active vectors’ characteristics in NDTC are analyzed in this paper based on the active factor. Furthermore, the fixed sector division criterion is proposed for NDTC (FS-NDTC), which can classify the complexity of the control system. Additionally, the switching table for the selections of the two active vectors is designed. The effectiveness of the proposed FS-NDTC is verified through the experimental results on a 100-W PMSM drive system.


2010 ◽  
Vol 163-167 ◽  
pp. 3551-3554
Author(s):  
Wei Peng ◽  
Zhi Xiang Zha

This template Based on cracks observation and finite element analysis of real engineering projects as well as bridge load test after reinforcement, causes and types of cracks in prestressed concrete box girder bridges and treating measurements are systematically studied. The results obtained from the calculation are presented to demonstrate the effect of sensitive factors, such as arrangement of longitudinal prestressed tendons, the magnitude of vertical prestressed force, temperature gradient, etc. The results show that the arrangement of longitudinal prestressed tendons and the magnitude of vertical prestressed force take key roles in cracks control of box girder webs. Lots of treating measurements are presented in accordance with different types of cracks, some of them are applied to a reinforcement engineering of a long span pretressed concrete continuous box girder bridge with cracks. Load test after reinforcement of the bridge demonstrates the reasonability of the treating measurements. Several design recommendations and construction measures about reinforcements and some sensitive factors mentioned above are proposed to control cracks.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1736
Author(s):  
In-Jun Yang ◽  
Si-Woo Song ◽  
Dong-Ho Kim ◽  
Kwang-Soo Kim ◽  
Won-Ho Kim

In an interior permanent magnet synchronous motor, an adhesive such as bond is generally injected into the magnet tolerance to prevent vibration of the permanent magnet within the insertion space. In this case, a disadvantage is that the magnet tolerance does not contribute to the performance. In this paper, ferrofluid is inserted to improve the torque density, utilizing the magnet tolerance. When inserting ferrofluid into the magnet tolerance, it is important to fix the magnet because conventional adhesives are not used, and it is important that the ferrofluid does not act as a leakage path within the insertion space. In this study, a new rotor configuration using a plastic barrier that satisfies these considerations was introduced. The analysis was conducted through finite element analysis (FEA), and this technique was verified by comparing the simulation results and the experimental results through a dynamo test. It was confirmed that the no-load back electromotive force in the final model increased through ferrofluid injection.


2013 ◽  
Vol 321-324 ◽  
pp. 1679-1685
Author(s):  
Jun Li ◽  
Jia Jun Yu ◽  
Zhenxing Chen

This paper mainly reviews the development of permanent magnet synchronous motor drive system. It presents several approaches of PMSM control strategies, including control strategies based on classical control, modern control and intelligent control. Theoretical background briefly describes the properties of these control techniques. Among these control strategies, vector control and direct torque control are considered as the mature methods for PMSM motors control currently. Advanced control strategies, with adaptive control, variable structure control and intelligent control included, improve the performance of PMSM in some respects, such as variations of plant parameters sensitivity, external disturbance and so on. It shows that the researches in this area are still a popular research topic. Finally, this paper prospected the foreground of the control strategies for PMSM.


2012 ◽  
Vol 150 ◽  
pp. 100-104
Author(s):  
Tao Zhang ◽  
Wei Ni ◽  
Hui Ping Zhang ◽  
Sha Sha Wu

When the permanent magnet synchronous motor is operated at a low speed. The rotor position and speed are very difficult to estimate using the extended flux or back EMF method. A novel modified current slope estimating method is used to estimate the rotor position and speed in low speed in this paper. The mathematical models of an interior permanent magnet synchronous motor (IPMSM) are deduced. The basic principle of modified current slope method is introduced. The simulation control system is built based on Matlab and a TMS320LF2407 digital signal processor is used to execute the rotor position and speed estimation. The experimental and simulation results have shown that the rotor position and speed can be accurately estimated in a low-speed operating region.


2013 ◽  
Vol 7 (1) ◽  
pp. 170-178 ◽  
Author(s):  
Weijun Yang ◽  
Yongda Yang ◽  
Jihua Yin ◽  
Yushuang Ni

In order to study the basic mechanical property of cast-in-place stiffening-ribbed-hollow-pipe reinforced concrete girderless floor, and similarities and differences of the structural performance compared with traditional floor, we carried out the destructive stage loading test on the short-term load test of floor model with four clamped edges supported in large scale, and conducted the long-term static load test. Also, the thesis conducted finite element analysis in virtue of ANSYS software for solid slab floor, stiffening-ribbed-hollow-pipe floor and tubular floor. The experiment indicates that the developing process of cracks, distribution and failure mode in stiffening-ribbed-hollow-pipe floor are similar to that of solid girderless floor, and that this kind of floor has higher bearing capacity and better plastic deformation capacity. The finite element analysis manifests that, compared with solid slab floor, the deadweight of stiffening-ribbed-hollow-pipe floor decreases on greater level while deformation increases little, and that compared with tubular floor, this floor has higher rigidity. So stiffening-ribbed-hollow-pipe reinforced concrete girderless floor is particularly suitable for long-span and large-bay building structure.


2016 ◽  
Vol 12 (1) ◽  
pp. 1-11
Author(s):  
Adel Obed ◽  
Ali Abdulabbas ◽  
Ahmed Chasib

The Permanent Magnet Synchronous Motor (PMSM) is commonly used as traction motors in the electric traction applications such as in subway train. The subway train is better transport vehicle due to its advantages of security, economic, health and friendly with nature. Braking is defined as removal of the kinetic energy stored in moving parts of machine. The plugging braking is the best braking offered and has the shortest time to stop. The subway train is a heavy machine and has a very high moment of inertia requiring a high braking torque to stop. The plugging braking is an effective method to provide a fast stop to the train. In this paper plugging braking system of the PMSM used in the subway train in normal and fault-tolerant operation is made. The model of the PMSM, three-phase Voltage Source Inverter (VSI) controlled using Space Vector Pulse Width Modulation technique (SVPWM), Field Oriented Control method (FOC) for independent control of two identical PMSMs and fault-tolerant operation is presented. Simulink model of the plugging braking system of PMSM in normal and fault tolerant operation is proposed using Matlab/Simulink software. Simulation results for different cases are given.


Sign in / Sign up

Export Citation Format

Share Document