scholarly journals Technology for the Recovery of Lithium from Geothermal Brines

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6805
Author(s):  
William T. Stringfellow ◽  
Patrick F. Dobson

Lithium is the principal component of high-energy-density batteries and is a critical material necessary for the economy and security of the United States. Brines from geothermal power production have been identified as a potential domestic source of lithium; however, lithium-rich geothermal brines are characterized by complex chemistry, high salinity, and high temperatures, which pose unique challenges for economic lithium extraction. The purpose of this paper is to examine and analyze direct lithium extraction technology in the context of developing sustainable lithium production from geothermal brines. In this paper, we are focused on the challenges of applying direct lithium extraction technology to geothermal brines; however, applications to other brines (such as coproduced brines from oil wells) are considered. The most technologically advanced approach for direct lithium extraction from geothermal brines is adsorption of lithium using inorganic sorbents. Other separation processes include extraction using solvents, sorption on organic resin and polymer materials, chemical precipitation, and membrane-dependent processes. The Salton Sea geothermal field in California has been identified as the most significant lithium brine resource in the US and past and present efforts to extract lithium and other minerals from Salton Sea brines were evaluated. Extraction of lithium with inorganic molecular sieve ion-exchange sorbents appears to offer the most immediate pathway for the development of economic lithium extraction and recovery from Salton Sea brines. Other promising technologies are still in early development, but may one day offer a second generation of methods for direct, selective lithium extraction. Initial studies have demonstrated that lithium extraction and recovery from geothermal brines are technically feasible, but challenges still remain in developing an economically and environmentally sustainable process at scale.

MRS Bulletin ◽  
1996 ◽  
Vol 21 (8) ◽  
pp. 58-62 ◽  
Author(s):  
Harold A. Davis ◽  
Gennady E. Remnev ◽  
Regan W. Stinnett ◽  
Kiyoshi Yatsui

Over the past decade, researchers in Japan, Russia, and the United States have been investigating the application of intense-pulsed-ion-beam (IPIB) technology (which has roots in inertial confinement fusion programs) to the surface treatment and coating of materials. The short range (0.1–10 μm) and high-energy density (1–50 J/cm2) of these short-pulsed (t ≥ 1 μs) beams (with ion currents I = 5–50 kA, and energies E = 100–1,000 keV) make them ideal flash-heat sources to rapidly vaporize or melt the near-surface layer of targets similar to the more familiar pulsed laser deposition (PLD) or laser surface treatment. The vaporized material can form coatings on substrates, and surface melting followed by rapid cooling (109 K/s) can form amorphous layers, dissolve precipitates, and form nonequilibrium microstructures.An advantage of this approach over laser processing is that these beams deliver 0.1–10 KJ per pulse to targets at expected overall electrical efficiencies (i.e., the ratio of extracted ion-beam energy to the total energy consumed in generating the beam) of 15–40% (compared to < 1% for the excimer lasers often used for similar applications). Consequently IPIB hardware can be compact and require relatively low capital investment. This opens the promise of environmentally conscious, low-cost, high-throughput manufacturing. Further, efficient beam transport to the target and excellent coupling of incident ion energy to targets are achieved, as opposed to lasers that may have limited coupling to reflective materials or produce reflecting plasmas at high incident fluence. The ion range is adjustable through selection of the ion species and kinetic energy, and the beam energy density can be tailored through control of the beam footprint at the target to melt (1–10 J/cm2) or to vaporize (10–50 J/cm2) the target surface. Beam pulse durations are short (≥ 1 μs) to minimize thermal conduction. Some disadvantages of IPIB processing over laser processing include the need to form and propagate the beams in vacuum, and the need for shielding of x-rays produced by relatively low-level electron current present in IPIB accelerators. Also these beams cannot be as tightly focused onto targets as lasers, making them unsuitable for applications requiring treatment on small spatial scales.


2020 ◽  
Author(s):  
Lanxiang Feng ◽  
Peng Yu ◽  
Xuewei Fu ◽  
Mingbo Yang ◽  
Yu Wang ◽  
...  

Abstract Scalable fabrication of high-quality thick sulfur electrodes with high-energy-density and good calendering-compatibility is a prerequisite for the practical success of metal-sulfur batteries. However, this task turns out extremely challenging due to the lack of not only advanced sulfur-rich active materials via scalable approach, but also quality-control principles for thick electrodes. Here, we first develop a new hail-inspired sulfur nanostorm (HSN) technology that can efficiently produce high-performance sulfur-rich secondary particles (S-rich SPs) with applesnail-egg-like structures. This biomimetic S-rich SPs rationally integrate critical material functions and good calendering-compatibility. Meanwhile, a concept of “healthy” microenvironment as learned from cell biology is proposed, for the first time, as a key principle revealing the critical role of calendering-compatibility in the quality-control of thick sulfur electrodes. Consequently, an ultrahigh areal capacity of 12 mAh cm− 2 @ 1 mA cm− 2 is realized. Further, we successfully demonstrate a pouch cell with an exceptional energy density of 430 Wh kg− 1 or 1,004 Wh L− 1 in a quasi-lean electrolyte condition. The technology and concept of this study may bring in new insights and general principles for design of advanced thick electrodes with, but not limited to, sulfur-based active materials.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2488 ◽  
Author(s):  
Xuewei Zhang ◽  
Jean-Christophe Daigle ◽  
Karim Zaghib

Solid-state batteries are an emerging option for next-generation traction batteries because they are safe and have a high energy density. Accordingly, in polymer research, one of the main goals is to achieve solid polymer electrolytes (SPEs) that could be facilely fabricated into any preferred size of thin films with high ionic conductivity as well as favorable mechanical properties. In particular, in the past two decades, many polymer materials of various structures have been applied to improve the performance of SPEs. In this review, the influences of polymer architecture on the physical and electrochemical properties of an SPE in lithium solid polymer batteries are systematically summarized. The discussion mainly focuses on four principal categories: linear, comb-like, hyper-branched, and crosslinked polymers, which have been widely reported in recent investigations as capable of optimizing the balance between mechanical resistance, ionic conductivity, and electrochemical stability. This paper presents new insights into the design and exploration of novel high-performance SPEs for lithium solid polymer batteries.


2005 ◽  
Vol 889 ◽  
Author(s):  
Baojin Chu ◽  
Xin Zhou ◽  
Bret Neese ◽  
Q. M. Zhang

ABSTRACTRecently, PVDF-TrFE-CFE terpolymer was developed in Penn State University. The polymer exhibits relaxor ferroelectric behavior. At room temperature, the low-field dielectric constant can be as high as 50-60, more than ten times larger than other dielectric polymer materials, such as Polypropylene, the most widely-used polymer materials for capacitor applications. Due to the large change of electric field induced polarization and high breakdown field, energy density of the terpolymer can reach ∼10 J/cm3, much larger than other polymer materials. In this paper, experimental results on energy density and non-linear dielectric behavior of the terpolymer will be reported.


2020 ◽  
Vol 54 (6) ◽  
pp. 126-136
Author(s):  
Jian Liu ◽  
Robert J. Cavagnaro ◽  
Zhiqun Daniel Deng ◽  
Yuyan Shao ◽  
Li-Jung Kuo ◽  
...  

AbstractRenewable power generated from ocean wave energy has faced technological and cost barriers that have hindered its penetration into utility-scale electricity markets. As an alternative, the production of chemical fuels—for example, ammonia (NH3), which has high energy density (11.5 MJ/L) and facile storage properties—may open wave energy to new markets including ocean exploration and transportation. Electrochemical synthesis of NH3 from air and water at ambient conditions has been studied and documented in the literature. Based on recent reports, it is possible to achieve an overall conversion efficiency of 10% from wave energy to NH3 by electrochemically reacting air and water. If all the 1170-TWh/year recoverable wave energy in the United States were used to produce renewable NH3 fuel as a replacement for hydrocarbon fuels, more than 250 million tons of CO2 emissions every year would be eliminated without accounting for the small amount of CO2 emission from the conversion of NH3. Several potential at-sea application scenarios have been proposed for renewable NH3 fuel including production and storage for marine shipping and seasonal energy storage for Arctic exploration. Liquefied NH3 has much higher energy density, both gravimetrically and volumetrically, than a variety of batteries; however, the energy efficiency of NH3 is lower than that of commonly used batteries such as Li-ion batteries. The levelized cost of storing NH3 prepared using electricity can be less than $0.2/kWh, and the storage time can exceed 10,000 h, which indicates that NH3 could be a promising energy-storage solution that makes use of abundant wave energy. However, safety and environmental concerns involved in the use of NH3 at sea exist and are identified and discussed in this paper. Also discussed are challenges regarding the electrocatalyst used for NH3 synthesis and how molecular simulation may help to screen electrocatalysts with high efficiency and selectivity.


2020 ◽  
Vol 35 (2) ◽  
pp. 348-381 ◽  
Author(s):  
Yen-Chiang Chang

Abstract With the growth of global energy demand, States are actively considering the exploration for new energy. Methane hydrate is one of the world’s new energy sources with high energy density and abundant reserves, which have great strategic significance. This article focuses on three aspects, namely, project preparation, risk prevention and accident management, and addresses the risk issues arising from the exploration of methane hydrate. It is important to apply the United Nations Convention on the Law of the Sea and other treaties, as well as customary international law, while examining the rules applicable to the exploration of methane hydrate. State practice such as those of the United States, Russia, Japan, the European Union and China, are also discussed. The article puts forward some suggestions on the development of China’s methane hydrate resources. The core objective is to achieve a balanced approach to the development of environmental protection and energy development.


2021 ◽  
Vol 11 (17) ◽  
pp. 8063
Author(s):  
Andrew Burke

In this paper, the design of high energy density dielectric capacitors for energy storage in vehicle, industrial, and electric utility applications have been considered in detail. The performance of these devices depends primarily on the dielectric constant and breakdown strength characteristics of the dielectric material used. A review of the literature on composite polymer materials to assess their present dielectric constants and the various approaches being pursued to increase energy density found that there are many papers in which materials having dielectric constants of 20–50 were reported, but only a few showing materials with very high dielectric constants of 500 and greater. The very high dielectric constants were usually achieved with nanoscale metallic or carbon particles embedded in a host polymer and the maximum dielectric constant occurred near the percolation threshold particle loading. In this study, an analytical method to calculate the dielectric constant of composite dielectric polymers with various types of nanoparticles embedded is presented. The method was applied using an Excel spreadsheet to calculate the characteristics of spiral wound battery cells using various composite polymers with embedded particles. The calculated energy densities were strong functions of the size of the particles and thickness of the dielectric layer in the cell. For a 1000 V cell, an energy density of 100–200 Wh/kg was calculated for 3–5 nm particles and 3–5 µ thick dielectric layers. The results of this study indicate that dielectric materials with an effective dielectric constant of 500–1000 are needed to develop dielectric capacitor cells with battery-like energy density. The breakdown strength would be 300–400 V/µ in a reverse sandwich multilayer dielectric arrangement. The leakage current of the cell would be determined from appropriate DC testing. These high energy density dielectric capacitors are very different from electrochemical capacitors that utilize conducting polymers and liquid electrolytes and are constructed much like batteries. The dielectric capacitors have a very high cell voltage and are constructed like conventional ceramic capacitors.


2020 ◽  
Vol 980 ◽  
pp. 126-135
Author(s):  
Shao Hua Cui ◽  
Jiang Ping Mei ◽  
Wei Li ◽  
Yun Ying Huang

The 21700 battery is a standard battery used by Tesla vehicles in the United States. It has the advantages of high energy density ratio, high output, low cost and high safety factor. The demand for 21700 battery is gradually increasing on the market. In order to meet the needs of new energy vehicles, the 21700 battery uses copper tab as the anode, which can minimize the internal resistance and improve the charge and discharge efficiency. However, the material of the battery case is steel, and the melting point of the steel is 452°C higher than that of copper. It is difficult to solder firmly using the traditional resistance welding process. In this paper, using TRIZ theory, through the causal analysis, technical conflict, material-field, physical conflicts and other tools, the 21700 battery anode resistance welding problem is analyzed in detail, and based on the analysis results to propose solutions: punching out the pitting on the tab forming a projection welding; inserting metal tungsten in the copper welding head; changing the welding pin head from the platform to the curved surface; introducing nitrogen gas. Under the premise of constant material and no increase in cost, the problem of poor welding of the anode and the battery case can be effectively solved.


Author(s):  
K.-J. Boehm ◽  
N. Alexander ◽  
J. Anderson ◽  
L. Carlson ◽  
M. Farrell

With European Laser Facilities such as the Extreme Light Infrastructure (ELI) and the Helmholtz International Beamline for Extreme Fields (HIBEF) scheduled to come online within the next couple of years, General Atomics, as a major supplier of targets and target components for the High Energy Density Physics community in the United States, is gearing up to meet their demand for large numbers of low cost targets. Using the production of a subassembly for the National Ignition Facility’s fusion targets as an example, we demonstrate that through automation of assembly tasks, the design of targets and their experimental setup can be fairly complex while keeping the assembly time and cost as a minimum. A six-axis Mitsubishi robot is used in combination with vision feedback and a force–torque sensor to assemble target subassemblies of different scales and designs with minimal change of tooling, allowing for design flexibility and short assembly setup times. Implementing automated measurement routines on a Nikon NEXIV microscope further reduces the effort required for target metrology, while electronic data collection and transfer complete a streamlined target production operation that can be adapted to a large variety of target designs.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (6) ◽  
pp. 24-30 ◽  
Author(s):  
NIKLAS BERGLIN ◽  
PER TOMANI ◽  
HASSAN SALMAN ◽  
SOLVIE HERSTAD SVÄRD ◽  
LARS-ERIK ÅMAND

Processes have been developed to produce a solid biofuel with high energy density and low ash content from kraft lignin precipitated from black liquor. Pilot-scale tests of the lignin biofuel were carried out with a 150 kW powder burner and a 12 MW circulating fluidized bed (CFB) boiler. Lignin powder could be fired in a powder burner with good combustion performance after some trimming of the air flows to reduce swirl. Lignin dried to 10% moisture content was easy to feed smoothly and had less bridging tendencies in the feeding system than did wood/bark powder. In the CFB boiler, lignin was easily handled and cofired together with bark. Although the filter cake was broken into smaller pieces and fines, the combustion was not disturbed. When cofiring lignin with bark, the sulfur emission increased compared with bark firing only, but most of the sulfur was captured by calcium in the bark ash. Conventional sulfur capture also occurred with addition of limestone to the bed. The sulfur content in the lignin had a significantly positive effect on reducing the alkali chloride content in the deposits, thus reducing the high temperature corrosion risk.


Sign in / Sign up

Export Citation Format

Share Document