scholarly journals Formation of Graphite-Copper/N-Silicon Schottky Photovoltaic Diodes Using Different Plasma Technologies

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6896
Author(s):  
Žydrūnas Kavaliauskas ◽  
Vilius Dovydaitis ◽  
Romualdas Kėželis ◽  
Liutauras Marcinauskas ◽  
Vitas Valinčius ◽  
...  

Plasma spraying and magnetron sputtering were used to form graphite–copper films on an n-type silicon surface. The main objective of this work was to compare the properties of the obtained graphite–copper Schottky photodiodes prepared using two different layer formation methods and to evaluate the influence of copper content on the surface morphology, phase structure, and photovoltaic characteristics of the graphite–copper films. Surface morphology analysis shows that the surface of the formed layers using either plasma spraying technology or the magnetron sputtering method consists of various sphere-shaped microstructures. The X-ray diffraction measurements demonstrated that the graphite–copper coatings formed by plasma spraying were crystalline phase. Meanwhile, the films deposited by magnetron sputtering were amorphous when the copper concentration was up to 9.7 at.%. The increase in copper content in the films led to the formation of Cu crystalline phase. Schottky diodes formed using magnetron sputtering technology had a maximum current density of 220 mA/cm2 at 5 V. Meanwhile, the maximum electric current density of Schottky photodiodes formed using plasma spraying reached 3.8 mA/cm2. It was demonstrated that the efficiency of Schottky diodes formed using magnetron sputtering was up to 60 times higher than Schottky diodes formed using plasma spraying.

2014 ◽  
Vol 528 ◽  
pp. 8-13
Author(s):  
Jian Jun Xi ◽  
Jun Zhao ◽  
Zhi Gang Wang ◽  
Chun Ping Zhao ◽  
Mei Ping Xue

This article presents a detailed research on pulse electrical parameters for non-cyanide electroplating copper plating on stainless still substrate. The study was made about the effect of the current density, duty ratio and frequency on the surface morphology, thickness and uniformity of the deposited layers. The surface morphology was examined by MIT 300 metallurgical microscope and the thickness of copper coatings was examined by TT260 coating thickness gauge. Current density 0.4A/dm2 is the optimum current at which the best uniform coating can be formed.


2017 ◽  
Vol 124 (1) ◽  
Author(s):  
Anton A. Komlev ◽  
Ekaterina A. Minzhulina ◽  
Vladislav V. Smirnov ◽  
Viktor I. Shapovalov

2010 ◽  
Vol 150-151 ◽  
pp. 1546-1550 ◽  
Author(s):  
Xiang Zhu He ◽  
Xiao Wei Zhang ◽  
Xin Li Zhou ◽  
Zhi Hong Fu

This paper presented the composite coatings of nickel with graphite particle on the aluminum substrate using a nickel sulfamate bath. Effects of graphite particle concentration on the surface morphologies of the composite coatings were investigated. The inclusion of graphite particle into metal deposits was dependent on many process parameters, including particle concentration, current density, pH and temperature. Results of SEM and XRD demonstrated that graphite particle had successfully deposited on that nickel matrix; besides, the surface morphology of coatings obtained from sulfamate bath containing 2g/L graphite particle dispersed more uniformly than the ones with higher concentration.


2007 ◽  
Vol 567-568 ◽  
pp. 253-256
Author(s):  
Regina Mikulíková ◽  
Kateřina Kolářová ◽  
Václav Švorčík ◽  
Barbora Dvořánková ◽  
Tomáš Sopuch

The properties of polyethylene doped with Ca2+ salt of oxidized cellulose was studied by different techniques. FTIR spectroscopy was used for the determination of crystalline phase in polymer film, surface wettability was determined by standard goniometry and surface morphology was examined by SEM microscopy. Adhesion of mouse 3T3 fibroblasts on the doped polymer was studied in vitro. It was found that the polyethylene doped with the cellulose derivative can be sterilized in boiling water. The number and homogeneity of adhering cells were shown to depend on the surface wettability and morphology.


2015 ◽  
Vol 1131 ◽  
pp. 251-254
Author(s):  
Montri Aiempanakit ◽  
Chantana Salawan ◽  
Kamon Aiempanakit

The effect of continuous and discontinuous deposition time on the properties of TiO2 thin films deposited by reactive direct current magnetron sputtering (DCMS) on glass substrates was investigated. The deposition processes were designed for a condition of continuous deposition time D1 (60 min) and three conditions of discontinuous deposition time D2 (30 min × 2 times), D3 (15 min × 4 times), and D4 (1 min × 60 times). The crystal structure, surface morphology, and hydrophilicity of TiO2 thin films were characterized by X-ray diffraction, atomic force microscope, and water contact angle method, respectively. It was found that the increasing of discontinuous deposition time (conditions from D1 to D4) shows the changing of grain size from big grain size with spherical shape to small grain size with oval shape. The crystallinity of TiO2 films decrease with increasing the discontinuous deposition time. The water contact angles also decrease as a function of increasing discontinuous deposition time. These results may be explained from the accumulation of heat on the substrate which affected the phase composition and surface morphology of TiO2 thin films.


Sign in / Sign up

Export Citation Format

Share Document