scholarly journals Water Hammer Control Using Additional Branched HDPE Pipe

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8008
Author(s):  
Michał Kubrak ◽  
Agnieszka Malesińska ◽  
Apoloniusz Kodura ◽  
Kamil Urbanowicz ◽  
Paweł Bury ◽  
...  

In pressurised pipeline systems, various water hammer events commonly occur. This phenomenon can cause extensive damage or even lead to a failure of the pumping system. The aim of this work is to experimentally re-examine the possibility of using an additional polymeric pipe, installed at the downstream end of the main pipeline, to control water hammer. A previous study on this topic investigated additional polymeric pipes connected to the hydraulic system with a short joint section of the same diameter as the main pipeline. In the current research, a different method of including an additional pipe was considered which involved connecting it with a pipe of a smaller diameter than the main pipeline. Three additional HDPE pipes, with different volumes, were investigated. The performance of the devices was studied for hydraulic transients induced by both rapid and slow, manual valve closures. Experimental results show that the additional polymeric pipe can provide significant pressure surge damping during rapid water hammer events. As the valve closing time lengthens, the influence of the additional pipe on the maximum pressure increase is reduced. The additional HDPE pipe does not provide notable protection against hydraulic transients induced by slow valve closure in terms of reducing the first pressure peak. No relationship between the volume of the additional pipe and the damping properties was noticed. The observed pressure oscillations were used to evaluate a one-dimensional numerical model, in which an additional pipe is described as a lumped parameter of the system. The viscoelastic properties of the device were included using the one element Kelvin–Voigt model. Transient flow equations were solved with the implicit method of characteristics. Calculation results demonstrate that this approach allows one to reasonably reproduce unsteady flow oscillations registered during experiments in terms of the maximum pressure increase and pressure wave oscillation period.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Norazlina Subani ◽  
Norsarahaida Amin

Water hammer on transient flow of hydrogen-natural gas mixture in a horizontal pipeline is analysed to determine the relationship between pressure waves and different modes of closing and opening of valves. Four types of laws applicable to closing valve, namely, instantaneous, linear, concave, and convex laws, are considered. These closure laws describe the speed variation of the hydrogen-natural gas mixture as the valve is closing. The numerical solution is obtained using the reduced order modelling technique. The results show that changes in the pressure wave profile and amplitude depend on the type of closing laws, valve closure times, and the number of polygonal segments in the closing function. The pressure wave profile varies from square to triangular and trapezoidal shape depending on the type of closing laws, while the amplitude of pressure waves reduces as the closing time is reduced and the numbers of polygonal segments are increased. The instantaneous and convex closing laws give rise to minimum and maximum pressure, respectively.


2014 ◽  
Vol 607 ◽  
pp. 551-555 ◽  
Author(s):  
Xiao Dong Yu ◽  
Jian Zhang ◽  
Cheng Yu Fan

Based on the theory of hydraulic transients and method of characteristics (MOC), the numerical model of hydraulic transients in water way system was established using the data of a practical hydropower station, and the probable transients were simulated. The influence of successive load rejection conditions on water hammer pressure of spiral case was analyzed. Compared with simultaneous load rejection, successive load rejection can make maximum pressure in spiral case and maximum rotating speed of runner more serious if the bifurcated pipe converging under surge tank in diversion-type hydropower station.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4071
Author(s):  
Michał Kubrak ◽  
Agnieszka Malesińska ◽  
Apoloniusz Kodura ◽  
Kamil Urbanowicz ◽  
Michał Stosiak

It is well known that the water hammer phenomenon can lead to pipeline system failures. For this reason, there is an increased need for simulation of hydraulic transients. High-density polyethylene (HDPE) pipes are commonly used in various pressurised pipeline systems. Most studies have only focused on water hammer events in a single pipe. However, typical fluid distribution networks are composed of serially connected pipes with various inner diameters. The present paper aims to investigate the influence of sudden cross-section changes in an HDPE pipeline system on pressure oscillations during the water hammer phenomenon. Numerical and experimental studies have been conducted. In order to include the viscoelastic behaviour of the HDPE pipe wall, the generalised Kelvin–Voigt model was introduced into the continuity equation. Transient equations were numerically solved using the explicit MacCormack method. A numerical model that involves assigning two values of flow velocity to the connection node was used. The aim of the conducted experiments was to record pressure changes downstream of the pipeline system during valve-induced water hammer. In order to validate the numerical model, the simulation results were compared with experimental data. A satisfactory compliance between the results of the numerical calculations and laboratory data was obtained.


2021 ◽  
Author(s):  
Qiongxiao Wu ◽  
Jianjun Wang ◽  
Jingming Chen ◽  
Pengzheng Li

Abstract Based on the one-dimensional simulation model of lubricating oil system is established and analyzed by using FLOWMASTER software, this paper proposes a new method of optimizing lubricating oil system by PID technology. Ensure that the configuration requirements and control strategies of the relevant accessories of the simulation model are satisfied with the design requirements. Firstly, by simulating lubricating oil pressure fluctuation and lubricating oil flow distribution under Open/Close Valve in different opening and closing time, the optimal opening/closing time of Open/Close Valve is determined to be 0.2 s and 0.5 s respectively. Secondly, by writing the controller script file combined with a controller to realize automatic unloading relief valve simulation, determine the relief valve pressure regulating range of 0∼0.38 MPa, For precision of constant pressure valve of oil spill, the simulation results show that the average 10 m3/h flow caused by pressure changes of about 0.06 MPa. Under the flow sudden change signal of about 40 m3/h, the maximum pressure change is less than 0.1 MPa. Through the simulation results, it is found that most of the lubrication parts in the original design have the phenomenon of flow redundancy, which causes unnecessary pump power loss. The system is optimized by PID technology. By comparing the simulation results before and after optimization, it is found that the speed of constant displacement pump could be changed in time by PID controller, and the flow redundancy could be improved significantly, so the lubricating oil system could be lower consumption and achieve the purpose of optimization.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1698 ◽  
Author(s):  
Lin Li ◽  
David Zhu ◽  
Biao Huang

Rapid filling/emptying of pipes is commonly encountered in water supply and sewer systems, during which pressure transients may cause unexpected large pressure and/or geyser events. In the present study, a linearized analytical model is first developed to obtain the approximate solutions of the maximum pressure and the characteristics of pressure oscillations caused by the pressurization of trapped air in a horizontal pipe when there is no or insignificant air release. The pressure pattern is a typical periodic wave, analogous to sinusoidal motion. The oscillation period and the time when the pressure attains the peak value are significantly influenced by the driving pressure and the initial length of the entrapped air pocket. When there is air release through a venting orifice, analysis by a three-dimensional computational fluid dynamics model using ANSYS Fluent was also conducted to furnish insights and details of air–water interactions. Flow features associated with the pressurization and air release were examined, and an air–water interface deformation that one-dimensional models are incapable of predicating was presented. Modelling results indicate that the residual air in the system depends on the relative position of the venting orifice. There are mainly two types of pressure oscillation patterns: namely, long or short-period oscillations and waterhammer. The latter can be observed when the venting orifice is located near the end of the pipe where the air is trapped.


Author(s):  
Alireza Riasi ◽  
Ahmad Nourbakhsh

Unsteady flow analysis in water power stations is one of the most important issues in order to predict undesirable pressure variations in waterways and also probable changes in rotor speed for the power plants safe operation. Installation of surge tank and relief valve is the two main methods for controlling of hydraulic transient. The relief valve is used in several medium and small hydropower stations instead of the surge tank and mounted on the penstock near the powerhouse. The recent generation of relief valves are reliable and beneficial and consist of fully control system that directly conducted by governor. This paper presents a numerical method for transient flow in hydropower stations using surge tank and relief valve. For this purpose the governing equations of transient flow in closed conduit are solved using the method of characteristics (MOC) using unsteady friction. Hydraulic turbine, surge tank and relief valve are considered as internal boundary conditions. The influence of surge tank and also relief valve on the maximum pressure in spiral case and turbine over speed has been studied for a real case. The results show that the transient condition is considerably improved by using a relief valve and this device can be mounted in lieu of an expensive surge tank.


2018 ◽  
Vol 5 (12) ◽  
pp. 181101 ◽  
Author(s):  
Y. Tatekura ◽  
M. Watanabe ◽  
K. Kobayashi ◽  
T. Sanada

The prime objective of this study is to answer the question: How large is the pressure developed at the instant of a spherical liquid droplet impact on a solid surface? Engel first proposed that the maximum pressure rise generated by a spherical liquid droplet impact on a solid surface is different from the one-dimensional water-hammer pressure by a spherical shape factor (Engel 1955 J. Res. Natl Bur. Stand. 55 (5), 281–298). Many researchers have since proposed various factors to accurately predict the maximum pressure rise. We numerically found that the maximum pressure rise can be predicted by the combination of water-hammer theory and the shock relation; then, we analytically extended Engel’s elastic impact model, by realizing that the progression speed of the contact between the gas–liquid interface and the solid surface is much faster than the compression wavefront propagation speed at the instant of the impact. We successfully correct Engel’s theory so that it can accurately provide the maximum pressure rise at the instant of impact between a spherical liquid droplet and solid surface, that is, no shape factor appears in the theory.


1991 ◽  
Vol 113 (4) ◽  
pp. 643-647 ◽  
Author(s):  
Chyr Pyng Liou

The maximum pressure head resulting from one-speed closure of wide open valves is investigated. The dimensionless variables formulated in this study make the subtle effect of the initial valve head loss explicit and separate from that of the pipe frictional head loss. The maximum head is related to initial pipe frictional head loss, the initial valve head loss, the inherent flow characteristic of the valve, and the closure period by plots of dimensionless variables. The trends of the variation of the maximum pressure head are discussed. An example is used to illustrate the usage of the plots, and to show the advantage of having a global perspective of the phenomenon in the selection and sizing of valves from the water hammer point of view.


Sign in / Sign up

Export Citation Format

Share Document