scholarly journals Analysis of Pressure Transient Following Rapid Filling of a Vented Horizontal Pipe

Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1698 ◽  
Author(s):  
Lin Li ◽  
David Zhu ◽  
Biao Huang

Rapid filling/emptying of pipes is commonly encountered in water supply and sewer systems, during which pressure transients may cause unexpected large pressure and/or geyser events. In the present study, a linearized analytical model is first developed to obtain the approximate solutions of the maximum pressure and the characteristics of pressure oscillations caused by the pressurization of trapped air in a horizontal pipe when there is no or insignificant air release. The pressure pattern is a typical periodic wave, analogous to sinusoidal motion. The oscillation period and the time when the pressure attains the peak value are significantly influenced by the driving pressure and the initial length of the entrapped air pocket. When there is air release through a venting orifice, analysis by a three-dimensional computational fluid dynamics model using ANSYS Fluent was also conducted to furnish insights and details of air–water interactions. Flow features associated with the pressurization and air release were examined, and an air–water interface deformation that one-dimensional models are incapable of predicating was presented. Modelling results indicate that the residual air in the system depends on the relative position of the venting orifice. There are mainly two types of pressure oscillation patterns: namely, long or short-period oscillations and waterhammer. The latter can be observed when the venting orifice is located near the end of the pipe where the air is trapped.

2019 ◽  
Vol 72 (1) ◽  
pp. 24-30
Author(s):  
Sen Jiang ◽  
Hua Ji ◽  
Tianhao Wang ◽  
Donglin Feng ◽  
Qian Li

Purpose The shapes of surface textures have been designed to control the leakage of mechanical seals in recent years. The purpose of this paper is to demonstrate the influence of geometric properties of elliptical dimples on the leakage rate. Design/methodology/approach A new geometric feature point is expressed using an analytical solution to locate the high-pressure zones. Furthermore, a numerical model of the three-dimensional flow field for the mechanical seal with elliptical dimples is developed using ANSYS Fluent to demonstrate the influencing mechanism. Findings The location of the proposed geometric converging point coincides with the maximum pressure point under different orientation angles. An inward flow on the leakage section observed from the simulation results is responsible for decreasing the leakage rate. Originality/value The influencing mechanism of the elliptical dimple on the leakage rate is demonstrated, which can facilitate the design of surface textures.


Author(s):  
M. A. Abd Halim ◽  
N. A. R. Nik Mohd ◽  
M. N. Mohd Nasir ◽  
M. N. Dahalan

Induction system or also known as the breathing system is a sub-component of the internal combustion system that supplies clean air for the combustion process. A good design of the induction system would be able to supply the air with adequate pressure, temperature and density for the combustion process to optimizing the engine performance. The induction system has an internal flow problem with a geometry that has rapid expansion or diverging and converging sections that may lead to sudden acceleration and deceleration of flow, flow separation and cause excessive turbulent fluctuation in the system. The aerodynamic performance of these induction systems influences the pressure drop effect and thus the engine performance. Therefore, in this work, the aerodynamics of motorcycle induction systems is to be investigated for a range of Cubic Feet per Minute (CFM). A three-dimensional simulation of the flow inside a generic 4-stroke motorcycle airbox were done using Reynolds-Averaged Navier Stokes (RANS) Computational Fluid Dynamics (CFD) solver in ANSYS Fluent version 11. The simulation results are validated by an experimental study performed using a flow bench. The study shows that the difference of the validation is 1.54% in average at the total pressure outlet. A potential improvement to the system have been observed and can be done to suit motorsports applications.


2021 ◽  
Vol 11 (15) ◽  
pp. 6972
Author(s):  
Lihua Cui ◽  
Fei Ma ◽  
Tengfei Cai

The cavitation phenomenon of the self-resonating waterjet for the modulation of erosion characteristics is investigated in this paper. A three-dimensional computational fluid dynamics (CFD) model was developed to analyze the unsteady characteristics of the self-resonating jet. The numerical model employs the mixture two-phase model, coupling the realizable turbulence model and Schnerr–Sauer cavitation model. Collected data from experimental tests were used to validate the model. Results of numerical simulations and experimental data frequency bands obtained by the Fast Fourier transform (FFT) method were in very good agreement. For better understanding the physical phenomena, the velocity, the pressure distributions, and the cavitation characteristics were investigated. The obtained results show that the sudden change of the flow velocity at the outlet of the nozzle leads to the forms of the low-pressure zone. When the pressure at the low-pressure zone is lower than the vapor pressure, the cavitation occurs. The flow field structure of the waterjet can be directly perceived through simulation, which can provide theoretical support for realizing the modulation of the erosion characteristics, optimizing nozzle structure.


Author(s):  
Eiman B Saheby ◽  
Xing Shen ◽  
Anthony P Hays ◽  
Zhang Jun

This study describes the aerodynamic efficiency of a forebody–inlet configuration and computational investigation of a drone system, capable of sustainable supersonic cruising at Mach 1.60. Because the whole drone configuration is formed around the induction system and the design is highly interrelated to the flow structure of forebody and inlet efficiency, analysis of this section and understanding its flow pattern is necessary before any progress in design phases. The compression surface is designed analytically using oblique shock patterns, which results in a low drag forebody. To study the concept, two inlet–forebody geometries are considered for Computational Fluid Dynamic simulation using ANSYS Fluent code. The supersonic and subsonic performance, effects of angle of attack, sideslip, and duct geometries on the propulsive efficiency of the concept are studied by solving the three-dimensional Navier–Stokes equations in structured cell domains. Comparing the results with the available data from other sources indicates that the aerodynamic efficiency of the concept is acceptable at supersonic and transonic regimes.


2002 ◽  
Vol 124 (3) ◽  
pp. 273-280 ◽  
Author(s):  
Tammy L. Haut Donahue ◽  
M. L. Hull ◽  
Mark M. Rashid ◽  
Christopher R. Jacobs

As a step towards developing a finite element model of the knee that can be used to study how the variables associated with a meniscal replacement affect tibio-femoral contact, the goals of this study were 1) to develop a geometrically accurate three-dimensional solid model of the knee joint with special attention given to the menisci and articular cartilage, 2) to determine to what extent bony deformations affect contact behavior, and 3) to determine whether constraining rotations other than flexion/extension affects the contact behavior of the joint during compressive loading. The model included both the cortical and trabecular bone of the femur and tibia, articular cartilage of the femoral condyles and tibial plateau, both the medial and lateral menisci with their horn attachments, the transverse ligament, the anterior cruciate ligament, and the medial collateral ligament. The solid models for the menisci and articular cartilage were created from surface scans provided by a noncontacting, laser-based, three-dimensional coordinate digitizing system with an root mean squared error (RMSE) of less than 8 microns. Solid models of both the tibia and femur were created from CT images, except for the most proximal surface of the tibia and most distal surface of the femur which were created with the three-dimensional coordinate digitizing system. The constitutive relation of the menisci treated the tissue as transversely isotropic and linearly elastic. Under the application of an 800 N compressive load at 0 degrees of flexion, six contact variables in each compartment (i.e., medial and lateral) were computed including maximum pressure, mean pressure, contact area, total contact force, and coordinates of the center of pressure. Convergence of the finite element solution was studied using three mesh sizes ranging from an average element size of 5 mm by 5 mm to 1 mm by 1 mm. The solution was considered converged for an average element size of 2 mm by 2 mm. Using this mesh size, finite element solutions for rigid versus deformable bones indicated that none of the contact variables changed by more than 2% when the femur and tibia were treated as rigid. However, differences in contact variables as large as 19% occurred when rotations other than flexion/extension were constrained. The largest difference was in the maximum pressure. Among the principal conclusions of the study are that accurate finite element solutions of tibio-femoral contact behavior can be obtained by treating the bones as rigid. However, unrealistic constraints on rotations other than flexion/extension can result in relatively large errors in contact variables.


2009 ◽  
Vol 635 ◽  
pp. 1-26 ◽  
Author(s):  
NICOLAS PÉRINET ◽  
DAMIR JURIC ◽  
LAURETTE S. TUCKERMAN

We simulate numerically the full dynamics of Faraday waves in three dimensions for two incompressible and immiscible viscous fluids. The Navier–Stokes equations are solved using a finite-difference projection method coupled with a front-tracking method for the interface between the two fluids. The critical accelerations and wavenumbers, as well as the temporal behaviour at onset are compared with the results of the linear Floquet analysis of Kumar & Tuckerman (J. Fluid Mech., vol. 279, 1994, p. 49). The finite-amplitude results are compared with the experiments of Kityk et al (Phys. Rev. E, vol. 72, 2005, p. 036209). In particular, we reproduce the detailed spatio-temporal spectrum of both square and hexagonal patterns within experimental uncertainty. We present the first calculations of a three-dimensional velocity field arising from the Faraday instability for a hexagonal pattern as it varies over its oscillation period.


1996 ◽  
Vol 118 (4) ◽  
pp. 580-585 ◽  
Author(s):  
R. F. Handschuh ◽  
T. P. Kicher

A modelling method for analyzing the three-dimensional thermal behavior of spiral bevel gears has been developed. The model surfaces are generated through application of differential geometry to the manufacturing process for face-milled spiral bevel gears. Contact on the gear surface is found by combining tooth contact analysis with three-dimensional Hertzian theory. The tooth contact analysis provides the principle curvatures and orientations of the two surfaces. This information is then used directly in the Hertzian analysis to find the contact size and maximum pressure. Heat generation during meshing is determined as a function of the applied load, sliding velocity, and coefficient of friction. Each of these factors change as the point of contact changes during meshing. A nonlinear finite element program was used to conduct the heat transfer analysis. This program permitted the time- and position-varying boundary conditions, found in operation, to be applied to a one-tooth model. An example model and analytical results are presented.


2019 ◽  
Vol 89 (10) ◽  
pp. 1044-1051
Author(s):  
Aleksandr S. Rulev ◽  
Anna M. Pugacheva

From acceptance of the 1948 Plan of Field-Protective Afforestation to the present (2019), this article considers the new agroforestry paradigms protracted formation. Scientific achievements from the 1940s, introduced into practice, served as the basis for decisions on natures global transformation. Pilot facilities from the beginning of the 20th century (the Bogdinsky agroforestry stronghold, the Stone-steppe oasis) still serve as reference objects for agroforest reclamation of territories, with a scientific approach that allows them to function productively today. The plans main idea is to combat drought and desertification of steppe lands, erosion processes, and to prevent sand and dust storms. Creation of 5709 thousand hectares of protective forests, afforestation of 1106 thousand hectares of ravines, fixing and afforestation of sand on an area of 322 thousand hectares, and implementation of many planned activities during a short period locate this plan among other ambitious international projects. The authors draw attention to the time of creation and the volume of plantings of paramount importance, that is, state protective forest belts and protective forest plantations. Understanding the importance of agroforestry for modern agricultural landscapes led to formation of sustainable and durable agroforestry systems in subarid landscapes based on a combination of agricultural and landscape-ecological ideologies. Allegedly, considering terrain ecotopes, three-dimensional evaluation of the agrolandscape and a non-linear approach make it possible to create multifunctional, highly productive agroforestry systems in critical agriculture zones.


2018 ◽  
Vol 56 (3) ◽  
pp. 370
Author(s):  
Nguyen Van Thang ◽  
Ha Tien Vinh ◽  
Bui Dinh Tri ◽  
Nguyen Duy Trong

This article carries out the numerical simulation of airflow over three dimensional car models using ANSYS Fluent software. The calculations have been performed by using realizable k-e turbulence model. The external airflow field of the simplified BMV M6 model with or without a wing is simulated. Several aerodynamic characteristics such as pressure distribution, velocity contours, velocity vectors, streamlines, turbulence kinetic energy and turbulence dissipation energy are analyzed in this study. The aerodynamic forces acting on the car model is calculated and compared with other authors.


Sign in / Sign up

Export Citation Format

Share Document