scholarly journals An Evaluation of the Performance of a Ground-to-Air Heat Exchanger in Different Ventilation Scenarios in a Single-Family Home in a Climate Characterized by Cold Winters and Hot Summers

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 105
Author(s):  
Aldona Skotnicka-Siepsiak

In the present study, the real-world performance of a ground-to-air heat exchanger (GAHE) was analyzed in the Polish climate which is characterized by warm summers and cold winters. The heat exchanger’s performance was monitored over a period of three years (2017 to 2019), and real-world conditions were compared with a Typical Meteorological Year (TMY). The aim of the study was to assess the exchanger’s energy-efficiency potential in various ventilation scenarios in a single-family home under variable real-world conditions, rather than to simply determine its heating and cooling capacity. The analyzed single-family home was a modern, single-story building with a usable floor area of 115 m2. The building’s thermal insulation and airtightness met stringent energy-efficiency standards. Energy consumption in a building equipped with a natural ventilation system was compared with three other scenarios: ventilation coupled with a GAHE, mechanical ventilation with heat recovery and a high-efficiency heat exchanger (HE), and mechanical ventilation with heat recovery coupled with a GAHE. Sensible heating and cooling loads were calculated based on standard ISO 13790:2008, and latent heating and cooling loads were also included in the energy balance. During the year, the GAHE generated around 257.6 W of heating energy per hour and 124.7 W of cooling energy per hour. Presented results can be used to select the optimal HVAC system scenarios for engineering projects as well as private investors.

Author(s):  
Rabbani Rasha ◽  
M. Tariq Iqbal

This paper represents an energy consumption and heat loss analysis of a heat recovery ventilator unit in a single-family detached house in St. John’s, NL, Canada. An energy-efficient house is a growing attraction to control the air infiltration, provide a comfortable environment with reduced yearly electricity cost. A mechanical induced ventilation system is inevitable to increase energy efficiency and to reduce greenhouse gas emissions of the house in order to supply fresh air. A heat recovery ventilator (HRV) is an air to air heat exchangers that recovers heat from inside of the house and delivers this preheated and fresh air to the space for maintaining the occupant’s comfort. In this paper, yearly energy consumption with the heat loss of a typical heat recovery ventilator unit is presented. MATLAB, BE opt, and Microsoft Excel are used to do all necessary simulation with calculation using one-year logged data. Methodology, results with graphs and detailed analysis of this research are included in this paper. This research indicates that the cost of running a HRV for a year in a house in St. John’s could be as high as $484 per year with an unknown air quality improvement.


Author(s):  
A I Sharapov ◽  
E Y Myakotina ◽  
Y V Shatskikh ◽  
A V Peshkova

2014 ◽  
Vol 899 ◽  
pp. 3-6 ◽  
Author(s):  
Martin Kamenský ◽  
Anna Vaskova ◽  
Marián Vertaľ

The next step in energy efficiency building design focus on near energy zero buildings. To design such buildings is important to understand how people use low energy building and to find reserves in energy. The paper presents an analysis of reserves in a family house. The analysis is done with simulations of different design and operation solutions based on knowledge from in situ measurements. Results show there are reserves in the heating and cooling period of year, which can lead to further energy savings of up to 15% and internal environment improvements.


2013 ◽  
Vol 21 (01) ◽  
pp. 1350002 ◽  
Author(s):  
YOUNES KARTACHI ◽  
ABDELLAH MECHAQRANE

In this study, we analyze the impact of ventilation heat recovery with the heating and cooling potential of earth air heat exchanger in real climatic conditions in domestic buildings in the Middle Atlas region. In our case study, we calculate the primary energy used by a domestic building built as per the conventional house design parameters required by the Moroccan regulation. We use climate data for the city of Fes in Northern Moroccan. Three system configurations were considered. The first was the mechanical extract ventilation system both with and without heat recovery. The second was the mechanical extract ventilation system with earth to air heat exchanger system (EAHEX), and the third system was the mechanical balanced ventilation system coupled with EAHEX system. Primary energy use strongly influences natural resources efficiency and the environmental impacts of energy supply activities. In this study we explore the primary energy implications of the mechanical balanced ventilation system coupled with the EAHEX system in residential buildings. The results of this study shows that the use of a balanced ventilation system, with a high efficiency instead of a mechanical extract ventilation system, decreases the final and primary energy consumption. Moreover, it decreases or increases the CO2 emission depending on the primary energy sources.


2018 ◽  
Vol 13 (1) ◽  
pp. 71-76
Author(s):  
Vasyl Zhelykh ◽  
Olena Savchenko ◽  
Vadym Matusevych

Abstract To save traditional energy sources in mechanical ventilation systems, it is advisable to use low-energy ground energy for preheating or cooling the outside air. Heat exchange between ground and outside air occurs in ground heat exchangers. Many factors influence the process of heat transfer between air in the heat exchanger and the ground, in particular geological and climatic parameters of the construction site, parameters of the ventilation air in the projected house, physical and geometric parameters of the heat exchanger tube. Part of the parameters when designing a ventilation system with earth-air heat exchangers couldn’t be changed. The one of the factors, the change which directly affects the process of heat transfer between ground and air, is convective heat transfer coefficient from the internal surface of the heat exchanger tube. In this article the designs of a horizontal earthair heat exchanger with heat pipes was proposed. The use of heat pipes in designs of a horizontal heat exchanger allows intensification of the process of heat exchange by turbulence of air flow inside the heat exchanger. Besides this, additionally heat transfer from the ground to the air is carried out at the expense of heat transfer in the heat pipe itself.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1537 ◽  
Author(s):  
Ringel ◽  
Laidi ◽  
Djenouri

From both global and local perspectives, there are strong reasons to promote energy efficiency. These reasons have prompted leaders in the European Union (EU) and countries of the Middle East and North Africa (MENA) to adopt policies to move their citizenry toward more efficient energy consumption. Energy efficiency policy is typically framed at the national, or transnational level. Policy makers then aim to incentivize microeconomic actors to align their decisions with macroeconomic policy. We suggest another path towards greater energy efficiency: Highlighting individual benefits at microeconomic level. By simulating lighting, heating and cooling operations in a model single-family home equipped with modest automation, we show that individual actors can be led to pursue energy efficiency out of enlightened self-interest. We apply simple-to-use, easily, scalable impact indicators that can be made available to homeowners and serve as intrinsic economic, environmental and social motivators for pursuing energy efficiency. The indicators reveal tangible homeowner benefits realizable under both the market-based pricing structure for energy in Germany and the state-subsidized pricing structure in Algeria. Benefits accrue under both the continental climate regime of Germany and the Mediterranean regime of Algeria, notably in the case that cooling energy needs are considered. Our findings show that smart home technology provides an attractive path for advancing energy efficiency goals. The indicators we assemble can help policy makers both to promote tangible benefits of energy efficiency to individual homeowners, and to identify those investments of public funds that best support individual pursuit of national and transnational energy goals.


Author(s):  
Gökhan GENÇ ◽  
Figen BEYHAN

Although historical buildings are ecological with their construction systems and materials, they cannot provide necessary performance in today's comfort conditions and therefore they are abandoned and remain in a damaged or dysfunctional state. Energy efficient improvement works are carried out in historical buildings in order to bring the historical buildings today's conditions, re-use and ensure their sustainability. However, there are many limitations in these studies due to the heritage characteristics of historical buildings. With these limitations, the works to be done should be carried out with the least intervention without damaging the heritage values of the historical buildings. For this reason, it is necessary to specially select the applications to be realized within the scope of energy efficiency in historical buildings and scaling the physical effects of the applications relative to each other. In this context, in this study, it is aimed to reveal the appropriate improvement methods in order to reach the maximum energy efficiency with the least physical intervention, with the techniques suitable for the historical texture by preserving the original qualities in the historical buildings. Based on the Historic England intervention evaluation scale developed in this framework, 5 scenarios, including the current situation and 4 different design scenarios, including interventions from small to large impacts, were created on a sample historical residential building, and the data of each scenario in terms of energy consumption were obtained. Models created within the framework of the scenarios were evaluated with the Design Builder simulation program, and annual heating and cooling loads and the amount of energy consumed per total m² were obtained. Evaluations were made by comparing the energy efficiency of applications at different degrees with the graphics and tables prepared in the light of these data. As a result, suggestions have been developed regarding the interventions to be made to historical buildings according to the intervention effect sizes in the context of energy efficiency with the evaluations made.


2019 ◽  
Vol 100 ◽  
pp. 00006 ◽  
Author(s):  
Wojciech Cepiński ◽  
Paweł Szałański

The article presents the possibility of using exhaust air from ventilation system to increase the efficiency (SCOP, COP, SEER and EER) of commonly used air conditioners with the function of a heat pump. These types of devices are very popular both in residential and in public buildings. The topic discussed in the article is very important, because the widespread increase of the energy efficiency of these devices significantly influences national electricity consumption. The possibility of increasing their efficiency by directing the exhaust air from the ventilation system to the heat exchanger of the air conditioner outdoor unit has been analysed. It has been shown that the use of the simple design solution described in the article allows for a significant increase of the efficiency of these devices (seasonal efficiency even up to 35% at 100% share of exhaust air), reducing the energy consumption and increasing their capacity and operation range. By increasing the share of exhaust air it is possible to ensure year-round operation of the device and even 100% coverage of heat demand.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 364 ◽  
Author(s):  
Marcello Aprile ◽  
Rossano Scoccia ◽  
Alice Dénarié ◽  
Pál Kiss ◽  
Marcell Dombrovszky ◽  
...  

District heating and cooling (DHC), when combined with waste or renewable energy sources, is an environmentally sound alternative to individual heating and cooling systems in buildings. In this work, the theoretical energy and economic performances of a DHC network complemented by compression heat pump and sewage heat exchanger are assessed through dynamic, year-round energy simulations. The proposed system comprises also a water storage and a PV plant. The study stems from the operational experience on a DHC network in Budapest, in which a new sewage heat recovery system is in place and provided the experimental base for assessing main operational parameters of the sewage heat exchanger, like effectiveness, parasitic energy consumption and impact of cleaning. The energy and economic potential is explored for a commercial district in Italy. It is found that the overall seasonal COP and EER are 3.10 and 3.64, while the seasonal COP and EER of the heat pump alone achieve 3.74 and 4.03, respectively. The economic feasibility is investigated by means of the levelized cost of heating and cooling (LCOHC). With an overall LCOHC between 79.1 and 89.9 €/MWh, the proposed system can be an attractive solution with respect to individual heat pumps.


Sign in / Sign up

Export Citation Format

Share Document