scholarly journals Wearable Shoe-Mounted Piezoelectric Energy Harvester for a Self-Powered Wireless Communication System

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 237
Author(s):  
Se Yeong Jeong ◽  
Liang Liang Xu ◽  
Chul Hee Ryu ◽  
Anuruddh Kumar ◽  
Seong Do Hong ◽  
...  

This study covers a self-powered wireless communication system that is powered using a piezoelectric energy harvester (PEH) in a shoe. The lead-zirconate-titanate (PZT) ceramic of the PEH was coated with UV resin, which (after curing under UV light) allowed it to withstand periodic pressure. The PEH was designed with a simple structure and placed under the sole of a shoe. The durability of the PEH was tested using a pushing tester and its applicability in shoes was examined. With periodic compression of 60 kg, the PEH produced 52 μW of energy at 280 kΩ. The energy generated by the PEH was used to power a wireless transmitter. A step-down converter with an under-voltage lockout function was used to gather enough energy to operate the wireless transmitter. The transmitter can be operated initially after walking 24 steps. After the transmitter has been activated, it can be operated again after 8 steps. Because a control center receives signals from the transmitter, it is possible to check the status of workers who work outside at night or mostly alone, to detect emergencies.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hygin Davidson Mayekol Mayck ◽  
Ahmed Mohamed Rashad Fath El-Bab ◽  
Evan Murimi ◽  
Pierre Moukala Mpele

Abstract In the last decade, piezoelectric energy harvesters have received a significant attention from the scientific community. This comes along with the need of developing self-powered devices such as medical implant to reduce the cost and risk of surgery. This paper investigates a two degree of freedom (2-DOF) piezoelectric energy harvester device to be integrated into a pacemaker. The 2-DOF is designed as a cut-out beam with a secondary beam cut into a primary one. The system is developed to operate in the frequency range of 0–2 Hz, with an acceleration of 1 g (9.8 m/s2) to match the heartbeat frequencies (1–1.67 Hz). The system uses a Lead Zirconate Titanate (PZT) and a Poly Methyl Methacrylate (PMMA) as lead beam to compensate the brittleness of PZT. COMSOL Multiphysics software is used to model and analyze the resonant frequencies of the system, and the stress in the piezoelectric beam. The proposed device has a compact volume of 26 × 11.58 × 0.41 mm, which can fit perfectly in a pacemaker whose battery volume has been reduced by 50%. The output voltage and power are determined through analytical calculus using Matlab. Typical pacemakers require 1 μW to operate. Thus, with a peak power of 30.97 μW at 1.5 Hz and an average output power of 11.05 μW observed from 0.9 to 1.7 Hz, the harvester can power a pacemaker. It is assumed that the energy harvester could extend its life time for 5–10 more years. Furthermore, the harvester operates at extremely low frequency and produces reasonable power, making it suitable for biomedical devices.


2017 ◽  
Vol 26 (09) ◽  
pp. 1750128 ◽  
Author(s):  
Babak Montazer ◽  
Utpal Sarma

Modeling and analysis of a MEMS piezoelectric (PZT-Lead Zirconate Titanate) unimorph cantilever with different substrates are presented in this paper. Stainless steel and Silicon [Formula: see text] are considered as substrate. The design is intended for energy harvesting from ambient vibrations. The cantilever model is based on Euler–Bernoulli beam theory. The generated voltage and power, the current density, resonance frequencies and tip displacement for different geometry (single layer and array structure) have been analyzed using finite element method. Variation of output power and resonant frequency for array structure with array elements connected in parallel have been studied. Strain distribution is studied for external vibrations with different frequencies. The geometry of the piezoelectric layer as well as the substrate has been optimized for maximum power output. The variation of generated power output with frequency and load has also been presented. Finally, several models are introduced and compared with traditional array MEMS energy harvester.


2014 ◽  
Vol 1051 ◽  
pp. 932-936
Author(s):  
Mun Heng Lam ◽  
Hanim Salleh

This paper presents work on improving piezoelectric energy harvesters. Harvesting energy from vibrations has received massive attention due to it being a renewable energy source that has a wide range of applications. Over the years of development, there is always research to further improve and optimise piezoelectric energy harvesters. For this paper, the piezoelectric specimen is made of PZT (Lead Zirconate Titanate), brass reinforced and has 31.8mm length, 12.7mm width and 0.511mm thick. An external beam is implemented to provide deflection amplification which in turn increases the output of the energy harvester. Depending on the configuration of the external beam, it can amplify output voltage from 100% to 300%.


2016 ◽  
Vol 28 (5) ◽  
pp. 653-662 ◽  
Author(s):  
Fengxian Bai ◽  
Guoliang Song ◽  
Weijie Dong ◽  
Lijuan Guan ◽  
Huayu Bao

A fan-structure piezoelectric energy harvester was proposed and tested in order to collect wind energy. Polyvinylidene fluoride was chosen due to its flexibility and longevity when compared to lead zirconate titanate. The impact-induced piezoelectric energy harvester consists of a stator and a rotor and a circular array of four cantilevers, utilize the rotor blades’ periodic impact on the free end of the cantilevers to generate oscillatory motion of cantilevers. A circular array of polyvinylidene fluoride cantilevers was fixed around the rotor in order to increase output power, save space at the same time. Static and transient characteristics of different cantilevers were investigated using finite element method and the result showed that polyvinylidene fluoride triangular cantilever performs the best in output voltage and power. Under the condition of optimal impedance and optimal overlap distance, a sum AC output power of four cantilevers without connection to each other approach to 0.75 mW was measured at the wind speed of 7 m/s when the blade number of rotor is 7 or 9. Two branches 0.27 mW DC output power was obtained when each two cantilevers in parallel connection in the case of full-wave rectification of each cantilever at the wind speed of 7 m/s.


2021 ◽  
Vol 21 (3) ◽  
pp. 1978-1983
Author(s):  
Bo Su Kim ◽  
Jae-Hoon Ji ◽  
Masao Kamiko ◽  
Seong Jin Kim ◽  
Jung-Hyuk Koh

Figure of merit the product of piezoelectric charge constant and the piezoelectric voltage constant—d33 × g33 in piezoelectric energy harvesting systems are critical measures in energy harvester applications. It is difficult to achieve high figure of merit because of the interdependence of d33 and the relative dielectric constant, εr. Until now, the prohibitive amount of effort required to solve this problem has led to it being considered an unsolvable issue. Lead zirconate titanate ceramic, Pb(Zr,Ti)O3, has been reported to exhibit high values of d33 and εr. However, to be employed as piezoelectric energy harvester, a candidate material is required to exhibit both high piezoelectric charge coefficient and high piezoelectric electric voltage coefficient simultaneously. To enhance the figure of merit of Pb(Zr,Ti)O3-based materials, dopants have also been considered. Pb(Zn,Ni,Nb)O3- added Pb(Zr,Ti)O3, Pb(Zr,Ti)O3–Pb(Zn,Ni,Nb)O3 ceramic has been reported to exhibit a high d33 value of 561 pC/N. It's dielectric constant has also been reported to be low at 1898. In this study, Pb(Zr,Ti)O3–Pb(Zn,Ni,Nb)O3–Pb(In,Nb)O3 was investigated in the context of enhancing the figure of merit of Pb(Zr,Ti)O3-based materials. During the proposed process, we increased the corresponding figure of merit by adding Pb(In,Nb)O3 material. Besides exhibiting a low dielectric constant, the Pb(In,Nb)O3 material was also observed to exhibit high d33 × g33 as the proposed doping increased the value of d33 greatly, while maintaining the dielectric constant (Yan, J., et al., 2019. Large engancement of trans coefficient in PZT-PZN energy harvesting system through introducing low εrPIN relaxor. Journal of the European Ceramic Society, 39, pp.2666–2672). Further, we conducted an optimization experiment by controlling the doping concentration and the sintering temperature.


Author(s):  
Chiao-Fang Hung ◽  
Chieh-Min Wang ◽  
Shin-Hung Ling ◽  
Tien-Kan Chung

In this paper, we demonstrate a novel miniature three-axis piezoelectric energy harvester. The energy harvester consists of four piezoelectric lead zirconate titanate cantilever beams, connector, proof mass, and mechanic frame. Through the connector, a special configuration with a well-constrained mechanism of the energy harvester is achieved. Due to the configuration/mechanism of the energy harvester, the Newton’s law of inertia and piezoelectric effect are utilized to convert the in-plane (either x-axis or y-axis) and out-of-plane (z-axis) environmental vibrations into voltage responses. This achieves energy harnessing from 3-axial environmental vibration.


2016 ◽  
Vol 3 (3) ◽  
Author(s):  
Sherif Keddis ◽  
Norbert Schwesinger

AbstractThis paper presents a new piezoelectric energy harvester that generates sufficient energy to power wireless sensor nodes autonomously. Multiple PVDF-foils are layered alternately with electrode foils and wound to a spool. Due to induced turbulence inside standard flow pipes the piezoelectric foils are forced to oscillate converting kinetic energy into mechanical stress thus generating electrical charge. The new multilayer spool design tackles the common disadvantages of similar harvesters related to low piezoelectric coefficients of Polyvinylidene-fluoride or brittleness of Lead-zirconate-titanate. Wind channel experiments to prove the feasibility of the concept result in a harvested output power of 0.54 μW at a wind velocity of 7 m/s. With efficient duty cycling of the sensor node 324 μWs of energy are available for data transmission. The presented harvester is proposed as a universal power supply for sensors inside pipe systems. All of the systems components are included inside the pipe allowing for a maintenance-free deployment of sensors in remote locations.


Sign in / Sign up

Export Citation Format

Share Document