scholarly journals Numerical and Experimental Investigation of a Non-Premixed Double Swirl Combustor

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 458
Author(s):  
Jiming Lin ◽  
Ming Bao ◽  
Feng Zhang ◽  
Yong Zhang ◽  
Jianhong Yang

This paper focuses on a detailed numerical investigation combined with experimental research for a non-premixed swirl combustor, which aims to analyze the effects of the blade angle of the outer swirler and equivalence ratio on flow and combustion characteristics. In the experiment, the temperature in the furnace was obtained with a thermocouple, while a realizable k-ε turbulence model and two-step reaction mechanism of methane and air are used in the numerical method. The calculation results are in good agreement with the experimental data. The results reveal that the air flow rate through the swirler accounts for a small amount of the total air due to the influence of the draft fan, and there is no central recirculation zone (CRZ) despite the presence of the swirler. It was also found that NO emissions gradually decrease as the blade angle of the outer swirler increases. It was also indicated that the average temperature is 100 K higher than the general combustor with a 58° blade angle in the furnace by increasing the equivalent ratio of the tertiary air area, and the NO emissions reduced by approximately 25%. This study can provide guidance for the operation and structural design of non-premixed swirl combustors.

2011 ◽  
Vol 421 ◽  
pp. 276-280 ◽  
Author(s):  
Ge Ning Xu ◽  
Hu Jun Xin ◽  
Feng Yi Lu ◽  
Ming Liang Yang

To assess the roller coaster multi-body system security, it is need to extract the running process of kinematics, dynamics, load spectrum and other features, as basis dates of the roller coaster structural design. Based on Solidworks/motion software and in the 3D model, the calculation formula of the carrying car velocity and acceleration is derived, and the five risk points of the roller coaster track section are found by simulation in the running, and the simulation results of roller coaster axle mass center velocity are compared with theoretical calculation results, which error is less than 4.1%, indicating that the calculation and simulation have a good fit and providing the evidence for the roller coaster structure design analysis.


Author(s):  
Petya Vryashkova ◽  
Pavlin Groudev ◽  
Antoaneta Stefanova

This paper presents a comparison of MELCOR calculated results with experimental data for the QUENCH-16 experiment. The analysis for the air ingress experiment QUENCH-16 has been performed by INRNE. The calculations have been performed with MELCOR code. The QUENCH-16 experiment has been performed on 27-th of July 2011 in the frame of the EC-supported LACOMECO program. The experiments have focused on air ingress investigation into an overheated core following earlier partial oxidation in steam. QUENCH-16 has been performed with limited pre-oxidation and low air flow rate. One of the main objectives of QUENCH-16 was to examine the interaction between nitrogen and oxidized cladding during a prolonged period of oxygen starvation. The bundle is made from 20 heated fuel rod simulators arranged in two concentric rings and one unheated central fuel rod simulator, each about 2.5 m long. The tungsten heaters were surrounded by annular ZrO2 pellets to simulate the UO2 fuel. The geometry and most other bundle components are prototypical for Western-type PWRs. To improve the obtained results it has been made a series of calculations to select an appropriate initial temperature of the oxidation of the fuel bundle and modified correlation oxidation of Zircaloy with MELCOR computer code. The compared results have shown good agreement of calculated hydrogen and oxygen starvation in comparison with test data.


1984 ◽  
Vol 106 (2) ◽  
pp. 306-312
Author(s):  
S. K. Mao ◽  
D. T. Li

A streamline curvature method for calculating S1 surface flow in turbines is presented. The authors propose a simple method in which a domain of calculation can be changed into an orderly rectangle without making coordinate transformations. Calculation results obtained on subsonic and transonic turbine cascades have been compared with those of experiment and another theory. Good agreement has been found. When calculating blade-to-blade flow velocity at subsonic speed, a function approximation technique can be used in lieu of iteration method in order to reduce calculation time. If the calculated flow section is of a mixed (subsonic-supersonic) flow type, a Boolean expression obtained from the truth table of flow states is proposed to judge the integrated character of the mixed flow section. Similarly, another Boolean expression is used to determine whether there exists a “choking” of the relevant section. Periodical conditions are satisfied by iterating the first-order derivative of stagnation streamline, which is formed simultaneously. It can be proved that the stagnation streamline formed in this way is unique.


2012 ◽  
Vol 535-537 ◽  
pp. 697-700
Author(s):  
Zhong Feng Guo ◽  
Jun Hong Hu ◽  
Xue Yan Sun

Roll wear model for Hot Strip Mill (HSM) was researched and the factors affect roll wear are analyzed. The simulation program was compiled by program visual C++ language and work roll wear was calculated according to the rolling schedule. Calculation results shows that roll wear like box shape. Strip width affects roll wear clearly. The strip length is one of the important issues which affect roll wear. Work roll wear of F7 top roll middle get to 280μm after a rolling schedule. Roll wear curve calculated by program were good agreement with the wear curve got by high-precision grinder. The results show that the roll wear model has high accuracy.


2016 ◽  
Vol 853 ◽  
pp. 216-220 ◽  
Author(s):  
You Gang Peng ◽  
Yong Wang

Experiments were carried out to investigate the effect of arm length on the accuracy of two typical conventional torque wrenches, namely, setting type torque wrench (STW) and indicating type torque wrench (ITW). The experiment results demonstrate that the measurement values of STW rises rapidly with decreasing arm length while measured torque of ITW shows irrelevant to arm length. Theoretical solution with respect to STW shows quite good agreement with experiment results. Irrelevance of arm length regard to ITW may be attributable to compensation of bending moment measurement due to proper arrangement of circuit and structural design. In order to conduct a proper assessment at a calibration laboratory or ensure its reliability with reference to actual use conditions, a torque wrench should be used by a customer at the loading point as recommended.


2011 ◽  
Vol 287-290 ◽  
pp. 1896-1901
Author(s):  
Zhi Kun Guo ◽  
Wan Xiang Chen ◽  
Qi Fan Wang ◽  
Yu Huang ◽  
Chao Pu Li ◽  
...  

The bearing capacities of one-way reinforced concrete beams with elastic supports are investigated in this paper. According to the nonlinear characteristics of the beams, the basic equations based on plastic theory of concrete are derived by considering the in-plane force effects that aroused by the constraints of supports when the beams deforming. It is indicated that the calculation results are in good agreement with experimental datum, and the influences of different supports on the bearing capacities of the beams are quantitatively given for the first time.


2007 ◽  
Vol 546-549 ◽  
pp. 447-450
Author(s):  
Tian Mo Liu ◽  
Hong Yi Zhou ◽  
Fu Sheng Pan

In the present work Miedema model has been developed, and the formation enthalpy of Mg-Zn alloys and the activity curve of Zn in Mg-Zn alloy at 1000K have been calculated according to the Miedema model. The calculation results showed that the formation enthalpy of Mg-Zn was small, and the excess entropy attributes a lot to the result. When excess enthopy was considered, the calculation results were found to be in good agreement with the experimental values.


2021 ◽  
pp. 0734242X2110337
Author(s):  
Tea Sokač ◽  
Anita Šalić ◽  
Dajana Kučić Grgić ◽  
Monika Šabić Runjavec ◽  
Marijana Vidaković ◽  
...  

In this paper, two different types of biowaste composting processes were carried out – composting without and with bioaugmentation. All experiments were performed in an adiabatic reactor for 14 days. Composting enhanced with bioaugmentation was the better choice because the thermophilic phase was achieved earlier, making the composting time shorter. Additionally, a higher conversion of substrate (amount of substrate consumed) was also noticed in the process enhanced by bioaugmentation. A mathematical model was developed and process parameters were estimated in order to optimize the composting process. Based on good agreement between experimental data and the mathematical model simulation results, a three-level-four-factor Box-Behnken experimental design was employed to define the optimal process conditions for further studies. It was found that the air flow rate and the mass fraction of the substrate have the most significant effect on the composting process. An improvement of the composting process was achieved after altering the mentioned variables, resulting in shorter composting time and higher conversion of the substrate.


2021 ◽  
pp. 43-54
Author(s):  
A. N. Krutov ◽  
◽  
S. Ya. Shkol’nikov ◽  

The mathematical model of kinematic wave, that is widely used in hydrological calculations, is generalized to compute processes in deformable channels. Self-similar solutions to the kinematic wave equations, namely, the discontinuous wave of increase and the “simple” wave of decrease are generalized. A numerical method is proposed for solving the kinematic wave equations for deformable channels. The comparison of calculation results with self-similar solutions revealed a good agreement.


2012 ◽  
Vol 567 ◽  
pp. 92-95 ◽  
Author(s):  
Yue Jiang ◽  
Ying Ying Ai ◽  
Qi Ting Wang

The changes of precipitation phases and matrix structures in Fe-13Cr-7Ni-4Mo-4Co-2W maraging stainless steel at different temperature were studied by using the Thermo-Calc software. The research was on the microstructures and precipitation behaviors of the maraging stainless steel, the performance is investigated through solution and aging treatment by TEMand SADP. The calculation results were in good agreement with the experiments, which demonstrated that when maraging stainless steel was treated in high temperature, the Laves-Fe2Mo precipitates became totally dissolved as the temperature was above 1050°C, and about 8% of R phase was found during aging. The calculation provides a guiding significant to the establishment of reasonable heat treatment process and the development of new materials.


Sign in / Sign up

Export Citation Format

Share Document