Ocean Energy

2022 ◽  
pp. 173-207
Author(s):  
Umesh Agarwal ◽  
Naveen Jain ◽  
Manoj Kumawat

Until the middle of 20th century, there was a strong conviction that the next century would be the age of renewable and nuclear energy resources. However, at present, the whole world is dependent on fossil fuels to satisfy their energy need. Environmental pollution and global warming are the main issues associated with the use of fossil fuels for electricity generation. As per the report of US Energy Information IE Outlook 2016, coal, natural gas, and petroleum share nearly 67.2% of global electricity generation whereas renewable energy shares only 21.9%. This share is only one-fifth of the global electricity demand. According to the IEA 2016 Medium Term Renewable Energy Market Report, worldwide power production capacity of marine was only 539 MW in 2014, and to reach at a level of 640 MW, it will take 2021. The oceans cover about 70% of the Earth and acts as the largest thermal energy collector. A recent study reveals that global development capability of ocean energy is approximated to be 337 GW, and more than 885 TWH of electricity can be produced from this potential.

2020 ◽  
Vol 12 (4) ◽  
pp. 1468
Author(s):  
Mohammed Bouznit ◽  
María del P. Pablo-Romero ◽  
Antonio Sánchez-Braza

Algeria has enormous renewable energy potential. However, fossil fuels remain the main electricity generation source, and the country is the third largest CO2 emitter in Africa. Algeria is also particularly vulnerable to climate change. Therefore, a set of actions related to energy, forests, industry and waste sectors have been programmed, over the period 2015–2030, and the government action program has given priority to promote renewable energy. In this sense, Algeria is committed to significantly promote investment in renewable energy, during the period 2020–2030. Thus by 2030, renewable electricity production capacity will achieve 22,000 MW, representing 27% of total electricity generation. This paper analyzes the electricity generation measures implemented in Algeria to reach the required energy mix, the legislative framework, financial aid, the feed-in tariff system, the tax incentives, and the tender and auctions undertaken. The analyses reveal that, although the electricity price premium policy has not been revoked, the newly enacted tender scheme is designed to become the standard procedure for launching renewable energy projects in Algeria in the coming years.


2010 ◽  
Vol 31 (2) ◽  
pp. 79 ◽  
Author(s):  
Grant A Stanley ◽  
Geoff J Dumsday

There are many issues with the continued use of fossil fuels for energy, including finite supply, energy security and their contribution to rising atmospheric CO2 concentrations and climate change, leading to substantial, increased interest in the research and development of renewable energy. In 2006, renewable energy provided only 2.5% of global energy needs, which is well short of the national renewable energy targets of many countries for the period 2020-2030, including Australia. For these reasons there is substantial investment in the development of renewable fuel technologies. Bioethanol and biodiesel derived from biomass are alternative fuels for which production capacity and demand is rapidly increasing.


2014 ◽  
Vol 126 (2) ◽  
pp. 34
Author(s):  
Timothy D. Finnigan

The ocean represents an enormous store of renewable energy – far more than could ever be used by the global population. The challenge is: how do we go about extracting this energy in a sustainable and economical way? It is the sun and the moon that give us this energy, in the form of waves, tides and thermal gradients. The amount of energy stored in the ocean, and continually replenished by the sun and moon, is well quantified, and certifiably massive. Despite decades of effort, attempts to extract meaningful quantities of energy from these ocean sources continue to be met with monumental challenges. Given the anticipated growth in energy demand, and continuing concern with the use of fossil fuels, it is now time to push through the barriers. The most widespread and easily tapped sources of ocean energy are surface waves and tidal currents. This presentation will focus on these two sources only.


Author(s):  
Dipti Mayee Majhi ◽  
D. Hota ◽  
L. Nanda

Global energy consumption is increasing at a dramatic rate due to the increase in the world’s population and the quest for improvement of living standards. Most of our energy comes from fossil fuels which cause the problem of global warming due to the emission of greenhouse gases (GHG). As a result, there are many harmful effects such as rise in sea level, drought in tropical regions near the equator, an increase in hurricanes, tornadoes and floods, and the spread of disease. Renewable energy is the energy generated from natural resources such as solar heat and light, wind, rain, tides, waves, and geothermal heat, which are replenished naturally. This paper highlights in particular the impact of power electronics in solving or mitigating the global warming problem and supporting the generation of renewable energy.


Author(s):  
Andrew Hugh MacDougall ◽  
Joeri Rogelj ◽  
Patrick Withey

Abstract Global agriculture is the second largest contributor to anthropogenic climate change after the burning of fossil fuels. However the potential to mitigate the agricultural climate change contribution is limited and needs to account for the imperative to supply food for the global population. Advances in microbial biomass cultivation technology have recently opened a pathway to growing substantial amounts of food for humans or livestock on a small fraction of the land presently used for agriculture. Here we investigate the potential climate change impacts of the end of agriculture as the primary human food production system. We find that replacing agricultural primary production with electrically powered microbial primary production before a low-carbon energy transition has been completed could redirect renewable energy away from replacing fossil fuels, potentially leading to higher total CO2 emissions. If deployed after a transition to renewable energy, the technology could alleviate agriculturally driven climate change. These diverging pathways originate from the reversibility of agricultural driven global warming and the irreversibility of fossil fuel CO2 driven warming. The range of reduced warming from the replacement of agriculture ranges from -0.22 [-0.29 to -0.04] ºC for Shared Socioeconomic Pathway (SSP)1-1.9 to -0.85 [-0.99 to -0.39]ºC for SSP4-6.0. For limited temperature target overshoot scenarios, replacement of agriculture could eliminate or reduce the need for active atmospheric CO2 removal to achieve the necessary peak and decline in global warming.


Author(s):  
Nick Jelley

‘What are renewables?’ defines renewable energy and provides a brief history of its use. It focuses on energy generated by solar, wind, and hydropower. These energy sources are renewable, in the sense that they are naturally replenished within days to decades. Only a few years ago, giving up our reliance on fossil fuels to tackle global warming would have been very difficult, as they are so enmeshed in our society and any alternative was very expensive. Nearly all of the sources of energy up to the 18th century were from renewables, after which time the world increasingly used fossil fuels. They powered the industrial revolution around the globe, and now provide most of our energy. But this dependence is unsustainable, because their use causes global warming, climate change, and pollution. Other than hydropower, which grew steadily during the 20th century and now provides almost a sixth of the world’s electricity demand, renewable energy was a neglected resource for power production for most of this period, being economically uncompetitive. But now, renewables are competitive, particularly through the support of feed-in tariffs and mass production, and governments are starting to pay more attention to clean energy, as the threat of climate change draws closer. Moving away from fossil fuels to renewables to supply both heat and electricity sustainably has become essential.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ayokunle Adesanya ◽  
Sanjay Misra ◽  
Rytis Maskeliunas ◽  
Robertas Damasevicius

PurposeThe limited supply of fossil fuels, constant rise in the demand of energy and the importance of reducing greenhouse emissions have brought the adoption of renewable energy sources for generation of electrical power. One of these sources that has the potential to supply the world’s energy needs is the ocean. Currently, ocean in West African region is mostly utilized for the extraction of oil and gas from the continental shelf. However, this resource is depleting, and the adaptation of ocean energy could be of major importance. The purpose of this paper is to discuss the possibilities of ocean-based renewable energy (OBRE) and analyze the economic impact of adapting an ocean energy using a thermal gradient (OTEC) approach for energy generation.Design/methodology/approachThe analysis is conducted from the perspective of cost, energy security and environmental protection.FindingsThis study shows that adapting ocean energy in the West Africa region can significantly produce the energy needed to match the rising energy demands for sustainable development of Nigeria. Although the transition toward using OBRE will incur high capital cost at the initial stage, eventually, it will lead to a cost-effective generation, transmission, environmental improvement and stable energy supply to match demand when compared with the conventional mode of generation in West Africa.Practical implicationsThis study will be helpful in determining the feasibility, performance, issues and environmental effects related to the generation and transmission of OBRE in the West Africa region.Originality/valueThe study will contribute toward analysis of the opportunities for adopting renewable energy sources and increasing energy sustainability for the West Africa coast regions.


2020 ◽  
Vol 7 (2) ◽  
pp. 29
Author(s):  
Jan-Erik Lane

Well-known professor Johan Rockström at Stockholm University claims that we are in control of things, now that the Earth Sciences have proven the biological  limits of our existing civilisations. But we do not know or have not begun the necessary large global adjustments towards a sustainable Planet Earth. The failure of the UN COP framework is blatant stating the ends but not the means of reducing significantly CO2 emissions. All major countries plan for much more energy in coming decades treating renewable energy sources as merely compliment to fossil fuels,  not substitutes. To accomplish the Paris Accord objevties (COP 21), coal power should be phased out.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 202
Author(s):  
Mitja Mori ◽  
Manuel Gutiérrez ◽  
Mihael Sekavčnik ◽  
Boštjan Drobnič

Mountain huts are stand-alone micro-grid systems that are not connected to a power grid. However, they impact the environment by generating electricity and through day-to-day operations. The installed generator needs to be flexible to cover fluctuations in the energy demand. Replacing fossil fuels with renewable energy sources presents a challenge when it comes to balancing electricity generation and consumption. This paper presents an integration-and-optimization process for renewable energy sources in a mountain hut’s electricity generation system combined with a lifecycle assessment. A custom computational model was developed, validated with experimental data and integrated into a TRNSYS model. Five different electricity generation topologies were modelled to find the best configuration that matches the dynamics and meets the cumulative electricity demand. A lifecycle assessment methodology was used to evaluate the environmental impacts of all the topologies for one typical operating year. The carbon footprint could be reduced by 34% in the case of the actually implemented system upgrade, and by up to 47% in the case of 100% renewable electricity generation. An investment cost analysis shows that improving the battery charging strategy has a minor effect on the payback time, but it can significantly reduce the environmental impacts.


Sign in / Sign up

Export Citation Format

Share Document