scholarly journals Impact of Urban Vegetation on Outdoor Thermal Comfort: Comparison between a Mediterranean City (Lecce, Italy) and a Northern European City (Lahti, Finland)

Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 228 ◽  
Author(s):  
Elisa Gatto ◽  
Riccardo Buccolieri ◽  
Eeva Aarrevaara ◽  
Fabio Ippolito ◽  
Rohinton Emmanuel ◽  
...  

This paper is devoted to the application of the modelling approach, as one of the methods for the evaluation of thermal comfort, to neighborhoods located in two cities characterized by a different climate, i.e., a Mediterranean city in southern Italy (Lecce) and a northern European city in southern Finland (Lahti). The impact of the presence of vegetation in both places is evaluated and compared, further considering alternative scenarios for thermal comfort improvement. The thermal comfort condition is expressed in terms of indices (mean radiant temperature (MRT) and predicted mean vote (PMV)). Results show that at pedestrian level the presence of vegetation lead to an improvement of thermal comfort in summer of about 2 points in both neighborhoods. This improvement is also evident observing the spatial distribution of MRT with a difference of 7 °C in the Lecce neighborhood and 3 °C in Lahti. In winter, thermal discomfort is observed in the presence of vegetation with a difference of 1.3 °C in the Lecce neighborhood and 1.5 °C in Lahti in terms of MRT. However, trees and green cover have the important potential to offset climate change impact and to make urban environments less thermally stressful. This study aims to guide urban planners towards a motivated and necessary transaction towards new green infrastructure whose effect should, however, be analyzed and investigated case by case.

2020 ◽  
Vol 12 (23) ◽  
pp. 10000
Author(s):  
Nazanin Nasrollahi ◽  
Amir Ghosouri ◽  
Jamal Khodakarami ◽  
Mohammad Taleghani

Thermal comfort is one of the main factors affecting pedestrian health, and improving thermal comfort enhances walkability. In this paper, the impact of various strategies on thermal-comfort improvement for pedestrians is thoroughly evaluated and compared. Review studies cover both fieldwork and simulation results. These strategies consist of shading (trees, buildings), the orientation and geometry of urban forms, vegetation, solar-reflective materials, and water bodies, which were investigated as the most effective ways to improve outdoor thermal comfort. Results showed that the most important climatic factors affecting outdoor thermal comfort are mean radiant temperature, wind speed, and wind direction in a microclimate. The best heat-mitigation strategy for improving thermal comfort was found to be vegetation and specifically trees because of their shading effect. The effect of height-to-width (H/W) ratio in canyons is another important factor. By increasing H/W ratio, the thermal-comfort level also increases. Deploying highly reflective materials in urban canyons is not recommended, as several studies showed that they could reflect solar radiation onto pedestrians. Results also showed that, in order to achieve a satisfactory level of thermal comfort, physiological and psychological factors should be considered together.


2011 ◽  
Vol 3 (1) ◽  
Author(s):  
Noémi Kántor ◽  
János Unger

AbstractThis paper gives a review on the topic of the mean radiant temperature Tmrt, the most important parameter influencing outdoor thermal comfort during sunny conditions. Tmrt summarizes all short wave and long wave radiation fluxes reaching the human body, which can be very complex (variable in spatial and also in temporal manner) in urban settings. Thermal comfort researchers and urban planners need easy and sound methodological approaches to assess Tmrt. After the basics of the Tmrt calculation some of the methods suitable for obtaining Tmrt also in urban environments will be presented.. Two of the discussed methods are based on instruments which measure the radiation fluxes integral (globe thermometer, pyranometer-pyrgeometer combination), and three of the methods are based on modelling the radiation environment with PC software (RayMan, ENVI-met and SOLWEIG).


2021 ◽  
Vol 13 (11) ◽  
pp. 6106
Author(s):  
Irantzu Alvarez ◽  
Laura Quesada-Ganuza ◽  
Estibaliz Briz ◽  
Leire Garmendia

This study assesses the impact of a heat wave on the thermal comfort of an unconstructed area: the North Zone of the Island of Zorrotzaurre (Bilbao, Spain). In this study, the impact of urban planning as proposed in the master plan on thermal comfort is modeled using the ENVI-met program. Likewise, the question of whether the urbanistic proposals are designed to create more resilient urban environments is analyzed in the face of increasingly frequent extreme weather events, especially heat waves. The study is centered on the analysis of temperature variables (air temperature and average radiant temperature) as well as wind speed and relative humidity. This was completed with the parameters of thermal comfort, the physiological equivalent temperature (PET) and the Universal Temperature Climate Index (UTCI) for the hours of the maximum and minimum daily temperatures. The results demonstrated the viability of analyzing thermal comfort through simulations with the ENVI-met program in order to analyze the behavior of urban spaces in various climate scenarios.


2021 ◽  
Vol 13 (8) ◽  
pp. 1443
Author(s):  
Maria Angela Dissegna ◽  
Tiangang Yin ◽  
Hao Wu ◽  
Nicolas Lauret ◽  
Shanshan Wei ◽  
...  

The microclimatic conditions of the urban environment influence significantly the thermal comfort of human beings. One of the main human biometeorology parameters of thermal comfort is the Mean Radiant Temperature (Tmrt), which quantifies effective radiative flux reaching a human body. Simulation tools have proven useful to analyze the radiative behavior of an urban space and its impact on the inhabitants. We present a new method to produce detailed modeling of Tmrt spatial distribution using the 3-D Discrete Anisotropic Radiation Transfer model (DART). Our approach is capable to simulate Tmrt at different scales and under a range of parameters including the urban pattern, surface material of ground, walls, roofs, and properties of the vegetation (coverage, shape, spectral signature, Leaf Area Index and Leaf Area Density). The main advantages of our method are found in (1) the fine treatment of radiation in both short-wave and long-wave domains, (2) detailed specification of optical properties of urban surface materials and of vegetation, (3) precise representation of the vegetation component, and (4) capability to assimilate 3-D inputs derived from multisource remote sensing data. We illustrate and provide a first evaluation of the method in Singapore, a tropical city experiencing strong Urban Heat Island effect (UHI) and seeking to enhance the outdoor thermal comfort. The comparison between DART modelled and field estimated Tmrt shows good agreement in our study site under clear-sky condition over a time period from 10:00 to 19:00 (R2 = 0.9697, RMSE = 3.3249). The use of a 3-D radiative transfer model shows promising capability to study urban microclimate and outdoor thermal comfort with increasing landscape details, and to build linkage to remote sensing data. Our methodology has the potential to contribute towards optimizing climate-sensitive urban design when combined with the appropriate tools.


Climate ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 116
Author(s):  
Elisa Gatto ◽  
Fabio Ippolito ◽  
Gennaro Rispoli ◽  
Oliver Savio Carlo ◽  
Jose Luis Santiago ◽  
...  

This study analyses the interactions and impacts between multiple factors i.e., urban greening, building layout, and meteorological conditions that characterise the urban microclimate and thermal comfort in the urban environment. The focus was on two neighbourhoods of Lecce city (southern Italy) characterised through field campaigns and modelling simulations on a typical hot summer day. Field campaigns were performed to collect greening, building geometry, and microclimate data, which were employed in numerical simulations of several greening scenarios using the Computational Fluid Dynamics-based and microclimate model ENVI-met. Results show that, on a typical summer day, trees may lead to an average daily decrease of air temperature by up to 1.00 °C and an improvement of thermal comfort in terms of Mean Radiant Temperature (MRT) by up to 5.53 °C and Predicted Mean Vote (PMV) by up to 0.53. This decrease is more evident when the urban greening (in terms of green surfaces and trees) is increased by 1266 m2 in the first neighbourhood and 1988 m2 in the second one, with respect to the current scenario, proving that shading effect mainly contributes to improving the urban microclimate during daytime. On the contrary, the trapping effect of heat, stored by the surfaces during the day and released during the evening, induces an increase of the spatially averaged MRT by up to 2 °C during the evenings and a slight deterioration of thermal comfort, but only locally where the concentration of high LAD trees is higher. This study contributes to a better understanding of the ecosystem services provided by greening with regard to microclimate and thermal comfort within an urban environment for several hours of the day. It adds knowledge about the role of green areas in a Mediterranean city, an important hot spot of climate change, and thus it can be a guide for important urban regeneration plans.


Biomimetics ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 48
Author(s):  
Kevin Araque ◽  
Paola Palacios ◽  
Dafni Mora ◽  
Miguel Chen Austin

In recent years, demographic growth has caused cities to expand their urban areas, increasing the risk of overheating, creating insurmountable microclimatic conditions within the urban area, which is why studies have been carried out on the urban heat island effect (UHI) and its mitigation. Therefore, this research aims to evaluate the cooling potential in the application of strategies based on biomimicry for the microclimate in a historical heritage city of Panama. For this, three case studies (base case, case 1, and case 2) of outdoor thermal comfort were evaluated, in which the Envi-met software was used to emulate and evaluate the thermal performance of these strategies during March (highest temperature month) and October (rainier month). The strategies used were extracted from the contrast of zebra skin, human skin, evaporative cooling, and ant skin. The results showed a reduction of 2.8 °C in the air temperature at 11:00, the radiant temperature decreased by 2.2 °C, and the PET index managed to reduce the thermal comfort indicator among its categories. The importance of thinking based on biomimicry in sustainable strategies is concluded; although significant changes were obtained, high risks of discomfort persist due to the layout and proximity of the building.


2011 ◽  
Vol 243-249 ◽  
pp. 4905-4908
Author(s):  
Xue Min Sui ◽  
Xu Zhang ◽  
Guang Hui Han

Relative humidity is an important micro-climate parameter in radiant cooling environment. Based on the human thermal comfort model, this paper studied the effect on PMV index of relative humidity, and studied the relationship of low mean radiant temperature and relative humidity, drew the appropriate design range of indoor relative humidity for radiant cooling systems.The results show that high relative humidity can compensate for the impact on thermal comfort of low mean radiant temperature, on the premise of achieving the same thermal comfort requirements. However, because of the limited compensation range of relative humidity, together with the constraints for it due to anti-condensation of radiant terminal devices, the design range of relative humidity should not be improved, and it can still use the traditional air-conditioning design standards.


2015 ◽  
Vol 650 ◽  
pp. 82-90 ◽  
Author(s):  
D. Kannamma ◽  
A. Meenatchi Sundaram

The climatic conditions in a man-made urban environment may differ appreciably from those in the surrounding natural or rural environs.... each urban man-made buildings, roads, parking area, factories......creates around and above it a modified climate with which it interacts [1].Outdoor thermal comfort has gained importance in thermal comfort studies especially in tropical countries. In country like India, culturally the activities are spread both indoors and outdoors. Therefore the need for ambient outdoor environment gains importance. As there are many factors that contribute to outdoor thermal comfort (climatic factors and physical factors), this study aims in analyzing the impact of building material contribution, in an institutional courtyard. In order to understand the thermal contribution of various building materials and to suggest material choice to designers, ENVIMET is used for simulation purpose. The outdoor thermal comfort index employed in this study is PET (Physiological Equivalent Temperature), calibrated using RAYMAN.


Nano LIFE ◽  
2018 ◽  
Vol 08 (02) ◽  
pp. 1840006
Author(s):  
Jing Li ◽  
Mengnan Qi ◽  
Qiuhua Duan ◽  
Lei Huo ◽  
Julian Wang

Significant changes in the urban built environment have occurred due to rapid urbanization and increases in the urban population. Such alterations may produce environmental health-related issues such as urban heat stress, air pollution and traffic noise. This research undertook a field study to collect data including urban design parameters, micro-environmental factors and city climatic information. This work was conducted over a two-year period on three pedestrian streets located in high-density urban areas in Beijing. These areas were selected in order to study the influences of urban street canyon texture within a particular geometric layout, wind flow corridors and variations in air temperature on pedestrian microclimatic comfort. The results will facilitate the work of urban planners by providing them with information for use in improving outdoor thermal comfort through their designs. A total of 60[Formula: see text]485 samples were organized into training, validation and test sets. We confirmed our hypothesis that internal wind speed ([Formula: see text] is attributable mainly to the urban texture coefficient ([Formula: see text], air temperature ([Formula: see text] and leading-in wind speed ([Formula: see text]. The model was tested using the test data collected onsite, which demonstrated a very accurate goodness-of-fit; the model achieved an R-squared value of 0.82, which meant that [Formula: see text] as a dependent variable was 82% correlated to the three predictors as independent variables. With this computer simulation, urban planners can now predict and visualize the impact of changes on the built environment in terms of either the direction of solar radiation received or increases in wind speed, in return for the desired thermal comfort level for residents of the neighborhood.


Sign in / Sign up

Export Citation Format

Share Document