scholarly journals North American Hardwoods Identification Using Machine-Learning

Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 298 ◽  
Author(s):  
Dercilio Junior Verly Lopes ◽  
Greg W. Burgreen ◽  
Edward D. Entsminger

This technical note determines the feasibility of using an InceptionV4_ResNetV2 convolutional neural network (CNN) to correctly identify hardwood species from macroscopic images. The method is composed of a commodity smartphone fitted with a 14× macro lens for photography. The end-grains of ten different North American hardwood species were photographed to create a dataset of 1869 images. The stratified 5-fold cross-validation machine-learning method was used, in which the number of testing samples varied from 341 to 342. Data augmentation was performed on-the-fly for each training set by rotating, zooming, and flipping images. It was found that the CNN could correctly identify hardwood species based on macroscopic images of its end-grain with an adjusted accuracy of 92.60%. With the current growing of machine-learning field, this model can then be readily deployed in a mobile application for field wood identification.

2020 ◽  
Vol 25 (40) ◽  
pp. 4296-4302 ◽  
Author(s):  
Yuan Zhang ◽  
Zhenyan Han ◽  
Qian Gao ◽  
Xiaoyi Bai ◽  
Chi Zhang ◽  
...  

Background: β thalassemia is a common monogenic genetic disease that is very harmful to human health. The disease arises is due to the deletion of or defects in β-globin, which reduces synthesis of the β-globin chain, resulting in a relatively excess number of α-chains. The formation of inclusion bodies deposited on the cell membrane causes a decrease in the ability of red blood cells to deform and a group of hereditary haemolytic diseases caused by massive destruction in the spleen. Methods: In this work, machine learning algorithms were employed to build a prediction model for inhibitors against K562 based on 117 inhibitors and 190 non-inhibitors. Results: The overall accuracy (ACC) of a 10-fold cross-validation test and an independent set test using Adaboost were 83.1% and 78.0%, respectively, surpassing Bayes Net, Random Forest, Random Tree, C4.5, SVM, KNN and Bagging. Conclusion: This study indicated that Adaboost could be applied to build a learning model in the prediction of inhibitors against K526 cells.


10.2196/13476 ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. e13476 ◽  
Author(s):  
Jiangpeng Wu ◽  
Xiangyi Zan ◽  
Liping Gao ◽  
Jianhong Zhao ◽  
Jing Fan ◽  
...  

Background Liquid biopsies based on blood samples have been widely accepted as a diagnostic and monitoring tool for cancers, but extremely high sensitivity is frequently needed due to the very low levels of the specially selected DNA, RNA, or protein biomarkers that are released into blood. However, routine blood indices tests are frequently ordered by physicians, as they are easy to perform and are cost effective. In addition, machine learning is broadly accepted for its ability to decipher complicated connections between multiple sets of test data and diseases. Objective The aim of this study is to discover the potential association between lung cancer and routine blood indices and thereby help clinicians and patients to identify lung cancer based on these routine tests. Methods The machine learning method known as Random Forest was adopted to build an identification model between routine blood indices and lung cancer that would determine if they were potentially linked. Ten-fold cross-validation and further tests were utilized to evaluate the reliability of the identification model. Results In total, 277 patients with 49 types of routine blood indices were included in this study, including 183 patients with lung cancer and 94 patients without lung cancer. Throughout the course of the study, there was correlation found between the combination of 19 types of routine blood indices and lung cancer. Lung cancer patients could be identified from other patients, especially those with tuberculosis (which usually has similar clinical symptoms to lung cancer), with a sensitivity, specificity and total accuracy of 96.3%, 94.97% and 95.7% for the cross-validation results, respectively. This identification method is called the routine blood indices model for lung cancer, and it promises to be of help as a tool for both clinicians and patients for the identification of lung cancer based on routine blood indices. Conclusions Lung cancer can be identified based on the combination of 19 types of routine blood indices, which implies that artificial intelligence can find the connections between a disease and the fundamental indices of blood, which could reduce the necessity of costly, elaborate blood test techniques for this purpose. It may also be possible that the combination of multiple indices obtained from routine blood tests may be connected to other diseases as well.


2018 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Qomariyatul Hasanah ◽  
Anang Andrianto ◽  
Muhammad Arief Hidayat

Sistem informasi posyandu ibu hamil dapat mengelola data kesehatan ibu hamil yang berkaitan dengan faktor resiko kehamilan. Faktor resiko kehamilan berdasarkan ketentuan Kartu Skor Poedji Rochyati (KSPR) digunakan bidan untuk menentukan resiko kehamilan dengan memberikan skor pada masing-masing parameter. KSPR memiliki kelemahan tidak dapat memberikan skor pada parameter yang belum pasti sehingga jika belum diketahui dengan pasti maka dianggap tidak terjadi. Konsep membaca pola data yang diadopsi dari teknik datamining menggunakan metode klasifikasi naive bayes dapat menjadi alternatif untuk kelemahan KSPR tersebut yaitu dengan mengklasifikasikan resiko kehamilan. Metode naïve bayes menghitung probabilitas parameter tertentu berdasarkan data pada periode sebelumnya yang telah ditentukan sebagai data training, berdasarkan hasil perhitungan tersebut dapat diketahui resiko kehamilan secara tepat sesuai parameter yang telah diketahui. Metode naïve bayes dipilih karena memiliki tingkat akurasi yang cukup tinggi daripada metode klasifikasi lainnya. Sistem informasi ini dibangun berbasis website agar dapat diakses secara mudah oleh beberapa posyandu yang berbeda tempat. Sistem dibangun mengadopsi dari model Waterfall. Sistem informasi posyandu ibu hamil dirancang dan dibangun dengan tiga (3) hak akses yaitu admin, bidan dan kader dengan masing-masing fitur yang dapat memudahkan penggunanya. Hasil dari penelitian ini adalah sistem informasi posyandu ibu hamil dengan penerapan klasifikasi resiko kehamilan menggunakan metode naïve bayes, dengan tingkat akurasi ketika menggunakan 17 atribut didapatkan 53.913%, 19 atribut didapatkan 54.348%, , 21 atribut didapatkan 54.783%, dan 22 atribut didapatkan 56.957%. Tingkat akurasi klasifikasi diperoleh menggunakan metode pengujian menggunakan Ten-Fold Cross Validation dimana training set dibagi menjadi 10 kelompok, jika kelompok 1 dijadikan test set maka kelompok 2 hingga 10 menjadi training set. Kata Kunci: Posyandu, Resiko Kehamilan, Waterfall, Datamining, Klasifikasi, Naïve bayes


2019 ◽  
Vol 11 (20) ◽  
pp. 5615 ◽  
Author(s):  
Myungsik Do ◽  
Wanhee Byun ◽  
Doh Kyoum Shin ◽  
Hyeryun Jin

It is common to call a taxi by taxi-apps in Korea and it was believed that an app-taxi service would provide customers with more convenience. However, customers’ requests can often be denied, as taxi drivers can decide whether to take calls from customers or not. Therefore, studies on factors that determine whether taxi drivers refuse or accept calls from customers are needed. This study investigated why taxi drivers might refuse calls from customers and factors that influence the success of matching within the service. This study used origin-destination data in Seoul and Daejeon obtained from T-map Taxis, which was analyzed via a decision tree using machine learning. Cross-validation was also performed. Results showed that distance, socio-economic features, and land uses affected matching success rate. Furthermore, distance was the most important factor in both Seoul and Daejeon. The matching success rate in Seoul was lowest for trips shorter than the average at midnight. In Daejeon, the rate was lowest when the calls were made for trips either shorter or longer than the average distance. This study showed that the matching success for ride-hailing services can be differentiated particularly by the distance of the requested trip depending on the size of the city.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Shilun Yang ◽  
Yanjia Shen ◽  
Wendan Lu ◽  
Yinglin Yang ◽  
Haigang Wang ◽  
...  

Xiaoxuming decoction (XXMD), a classic traditional Chinese medicine (TCM) prescription, has been used as a therapeutic in the treatment of stroke in clinical practice for over 1200 years. However, the pharmacological mechanisms of XXMD have not yet been elucidated. The purpose of this study was to develop neuroprotective models for identifying neuroprotective compounds in XXMD against hypoxia-induced and H2O2-induced brain cell damage. In this study, a phenotype-based classification method was designed by machine learning to identify neuroprotective compounds and to clarify the compatibility of XXMD components. Four different single classifiers (AB, kNN, CT, and RF) and molecular fingerprint descriptors were used to construct stacked naïve Bayesian models. Among them, the RF algorithm had a better performance with an average MCC value of 0.725±0.014 and 0.774±0.042 from 5-fold cross-validation and test set, respectively. The probability values calculated by four models were then integrated into a stacked Bayesian model. In total, two optimal models, s-NB-1-LPFP6 and s-NB-2-LPFP6, were obtained. The two validated optimal models revealed Matthews correlation coefficients (MCC) of 0.968 and 0.993 for 5-fold cross-validation and of 0.874 and 0.959 for the test set, respectively. Furthermore, the two models were used for virtual screening experiments to identify neuroprotective compounds in XXMD. Ten representative compounds with potential therapeutic effects against the two phenotypes were selected for further cell-based assays. Among the selected compounds, two compounds significantly inhibited H2O2-induced and Na2S2O4-induced neurotoxicity simultaneously. Together, our findings suggested that machine learning algorithms such as combination Bayesian models were feasible to predict neuroprotective compounds and to preliminarily demonstrate the pharmacological mechanisms of TCM.


2020 ◽  
Vol 10 (6) ◽  
pp. 1999 ◽  
Author(s):  
Milica M. Badža ◽  
Marko Č. Barjaktarović

The classification of brain tumors is performed by biopsy, which is not usually conducted before definitive brain surgery. The improvement of technology and machine learning can help radiologists in tumor diagnostics without invasive measures. A machine-learning algorithm that has achieved substantial results in image segmentation and classification is the convolutional neural network (CNN). We present a new CNN architecture for brain tumor classification of three tumor types. The developed network is simpler than already-existing pre-trained networks, and it was tested on T1-weighted contrast-enhanced magnetic resonance images. The performance of the network was evaluated using four approaches: combinations of two 10-fold cross-validation methods and two databases. The generalization capability of the network was tested with one of the 10-fold methods, subject-wise cross-validation, and the improvement was tested by using an augmented image database. The best result for the 10-fold cross-validation method was obtained for the record-wise cross-validation for the augmented data set, and, in that case, the accuracy was 96.56%. With good generalization capability and good execution speed, the new developed CNN architecture could be used as an effective decision-support tool for radiologists in medical diagnostics.


2016 ◽  
Vol 14 (03) ◽  
pp. 1650011 ◽  
Author(s):  
Wajid Arshad Abbasi ◽  
Fayyaz Ul Amir Afsar Minhas

The study of interactions between host and pathogen proteins is important for understanding the underlying mechanisms of infectious diseases and for developing novel therapeutic solutions. Wet-lab techniques for detecting protein–protein interactions (PPIs) can benefit from computational predictions. Machine learning is one of the computational approaches that can assist biologists by predicting promising PPIs. A number of machine learning based methods for predicting host–pathogen interactions (HPI) have been proposed in the literature. The techniques used for assessing the accuracy of such predictors are of critical importance in this domain. In this paper, we question the effectiveness of K-fold cross-validation for estimating the generalization ability of HPI prediction for proteins with no known interactions. K-fold cross-validation does not model this scenario, and we demonstrate a sizable difference between its performance and the performance of an alternative evaluation scheme called leave one pathogen protein out (LOPO) cross-validation. LOPO is more effective in modeling the real world use of HPI predictors, specifically for cases in which no information about the interacting partners of a pathogen protein is available during training. We also point out that currently used metrics such as areas under the precision-recall or receiver operating characteristic curves are not intuitive to biologists and propose simpler and more directly interpretable metrics for this purpose.


Teknika ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 18-26
Author(s):  
Hendry Cipta Husada ◽  
Adi Suryaputra Paramita

Perkembangan teknologi saat ini telah memberikan kemudahan bagi banyak orang dalam mendapatkan dan menyebarkan informasi di berbagai social media platform. Twitter merupakan salah satu media yang kerap digunakan untuk menyampaikan opini sebagai bentuk reaksi seseorang atas suatu hal. Opini yang terdapat di Twitter dapat digunakan perusahaan maskapai penerbangan sebagai parameter kunci untuk mengetahui tingkat kepuasan publik sekaligus bahan evaluasi bagi perusahaan. Berdasarkan hal tersebut, diperlukan sebuah metode yang dapat secara otomatis melakukan klasifikasi opini ke dalam kategori positif, negatif, atau netral melalui proses analisis sentimen. Proses analisis sentimen dilakukan dengan proses data preprocessing, pembobotan kata menggunakan metode TF-IDF, penerapan algoritma, dan pembahasan atas hasil klasifikasi. Klasifikasi opini dilakukan dengan machine learning approach memanfaatkan algoritma multi-class Support Vector Machine (SVM). Data yang digunakan dalam penelitian ini adalah opini dalam bahasa Inggris dari para pengguna Twitter terhadap maskapai penerbangan. Berdasarkan pengujian yang telah dilakukan, hasil klasifikasi terbaik diperoleh menggunakan SVM kernel RBF pada nilai parameter 𝐶(complexity) = 10 dan 𝛾(gamma) = 1, dengan nilai accuracy sebesar 84,37% dan 80,41% ketika menggunakan 10-fold cross validation.


Author(s):  
Mahendra Awale ◽  
Jean-Louis Reymond

<div>Here we report PPB2 as a target prediction tool assigning targets to a query molecule based on ChEMBL data. PPB2 computes ligand similarities using molecular fingerprints encoding composition (MQN), molecular shape and pharmacophores (Xfp), and substructures (ECfp4), and features an unprecedented combination of nearest neighbor (NN) searches and Naïve Bayes (NB) machine learning, together with simple NN searches, NB and Deep Neural Network (DNN) machine learning models as further options. Although NN(ECfp4) gives the best results in terms of recall in a 10-fold cross-validation study, combining NN searches with NB machine learning provides superior precision statistics, as well as better results in a case study predicting off-targets of a recently reported TRPV6 calcium channel inhibitor, illustrating the value of this combined approach. PPB2 is available to assess possible off-targets of small molecule drug-like compounds by public access at ppb2.gdb.tools.</div>


2019 ◽  
Author(s):  
Maxime Thibault ◽  
Denis Lebel

AbstractThe objective of this study was to determine if it is feasible to use machine learning to evaluate how a medication order is contextually appropriate for a patient, in order to assist order review by pharmacists. A neural network was constructed using as input the sequence of word2vec embeddings of the 30 previous orders, as well as the currently active medications, pharmacological classes and ordering department, to predict the next order. The model was trained with data from 2013 to 2017, optimized using 5-fold cross-validation, and tested on orders from 2018. A survey was developed to obtain pharmacist ratings on a sample of 20 orders, which were compared with predictions. The training set included 1 022 272 orders. The test set included 95 310 orders. Baseline training set top 1, top 10 and top 30 accuracy using a dummy classifier were respectively 4.5%, 23.6% and 44.1%. Final test set accuracies were, respectively, 44.4%, 69.9% and 80.4%. Populations in which the model performed the best were obstetrics and gynecology patients and newborn babies (either in or out of neonatal intensive care). Pharmacists agreed poorly on their ratings of sampled orders with a Fleiss kappa of 0.283. The breakdown of metrics by population showed better performance in patients following less variable order patterns, indicating potential usefulness in triaging routine orders to less extensive pharmacist review. We conclude that machine learning has potential for helping pharmacists review medication orders. Future studies should aim at evaluating the clinical benefits of using such a model in practice.


Sign in / Sign up

Export Citation Format

Share Document