scholarly journals Soil Bacterial and Fungal Community Responses to Throughfall Reduction in a Eucalyptus Plantation in Southern China

Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Yubiao Lin ◽  
Jiejun Kong ◽  
Ling Yang ◽  
Qian He ◽  
Yan Su ◽  
...  

In subtropical plantations in southern China, how soil microbial communities respond to climate change-induced drought is poorly understood. A field experiment was conducted in a subtropical Eucalyptus plantation to determine the impacts of 50% of throughfall reduction (TR) on soil microbial community composition, function, and soil physicochemical properties. Results showed that TR reduced soil water content (SWC) and soil available phosphorus (AP) content. TR significantly altered 196 bacterial operational taxonomic units (OTUs), most of them belonging to Acidobacteria, Actinobacteria, and Proteobacteria, while there were fewer changes in fungal OTUs. At the phylum level, TR increased the relative abundance of Acidobacteria at 0–20 cm soil depth by 37.18%, but failed to influence the relative abundance of the fungal phylum. Notably, TR did not alter the alpha diversity of the bacterial and fungal communities. The redundancy analysis showed that the bacterial communities were significantly correlated with SWC, and fungal communities were significantly correlated with AP content. According to predictions of bacterial and fungal community functions using PICRUSt2 and FUNGuild platforms, TR had different effects on both bacterial and fungal communities. Overall, SWC and AP decreased during TR, resulting in greater changes in soil bacterial community structure, but did not dramatically change soil fungal community structure.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7014 ◽  
Author(s):  
Lukas Beule ◽  
Ko-Hsuan Chen ◽  
Chih-Ming Hsu ◽  
Cheryl Mackowiak ◽  
Jose C.B. Dubeux Jr. ◽  
...  

BackgroundCultivars of bahiagrass (Paspalum notatumFlüggé) are widely used for pasture in the Southeastern USA. Soil microbial communities are unexplored in bahiagrass and they may be cultivar-dependent, as previously proven for other grass species. Understanding the influence of cultivar selection on soil microbial communities is crucial as microbiome taxa have repeatedly been shown to be directly linked to plant performance.ObjectivesThis study aimed to determine whether different bahiagrass cultivars interactively influence soil bacterial and fungal communities.MethodsSix bahiagrass cultivars (‘Argentine’, ‘Pensacola’, ‘Sand Mountain’, ‘Tifton 9’, ‘TifQuik’, and ‘UF-Riata’) were grown in a randomized complete block design with four replicate plots of 4.6 × 1.8 m per cultivar in a Rhodic Kandiudults soil in Northwest Florida, USA. Three soil subsamples per replicate plot were randomly collected. Soil DNA was extracted and bacterial 16S ribosomal RNA and fungal ribosomal internal transcribed spacer 1 genes were amplified and sequenced with one Illumina Miseq Nano.ResultsThe soil bacterial and fungal community across bahiagrass cultivars showed similarities with communities recovered from other grassland ecosystems. Few differences in community composition and diversity of soil bacteria among cultivars were detected; none were detected for soil fungi. The relative abundance of sequences assigned to nitrite-oxidizingNitrospirawas greater under ‘Sand Mountain’ than ‘UF-Riata’. Indicator species analysis revealed that several bacterial and fungal indicators associated with either a single cultivar or a combination of cultivars are likely to be plant pathogens or antagonists.ConclusionsOur results suggest a low impact of plant cultivar choice on the soil bacterial community composition, whereas the soil fungal community was unaffected. Shifts in the relative abundance ofNitrospiramembers in response to cultivar choice may have implications for soil N dynamics. The cultivars associated with presumptive plant pathogens or antagonists indicates that the ability of bahiagrass to control plant pathogens may be cultivar-dependent, however, physiological studies on plant-microbe interactions are required to confirm this presumption. We therefore suggest that future studies should explore the potential of different bahiagrass cultivars on plant pathogen control, particularly in sod-based crop rotation.


2020 ◽  
Vol 8 (6) ◽  
pp. 834
Author(s):  
Naihui Li ◽  
Danmei Gao ◽  
Xingang Zhou ◽  
Shaocan Chen ◽  
Chunxia Li ◽  
...  

Intercropping can achieve sustainable agricultural development by increasing plant diversity. In this study, we investigated the effects of tomato monoculture and tomato/potato-onion intercropping systems on tomato seedling growth and changes of soil microbial communities in greenhouse conditions. Results showed that the intercropping with potato-onion increased tomato seedling biomass. Compared with monoculture system, the alpha diversity of soil bacterial and fungal communities, beta diversity and abundance of bacterial community were increased in the intercropping system. Nevertheless, the beta-diversity and abundance of fungal community had no difference between the intercropping and monoculture systems. The relative abundances of some taxa (i.e., Acidobacteria-Subgroup-6, Arthrobacter, Bacillus, Pseudomonas) and several OTUs with the potential to promote plant growth were increased, while the relative abundances of some potential plant pathogens (i.e., Cladosporium) were decreased in the intercropping system. Redundancy analysis indicated that bacterial community structure was significantly influenced by soil organic carbon and pH, the fungal community structure was related to changes in soil organic carbon and available phosphorus. Overall, our results suggested that the tomato/potato-onion intercropping system altered soil microbial communities and improved the soil environment, which may be the main factor in promoting tomato growth.


2021 ◽  
Author(s):  
Miao-Ping Xu ◽  
Jia-Yi Wang ◽  
Xin-Hui Han ◽  
Cheng-Jie Ren ◽  
Gai-He Yang

Abstract Soil microorganisms play an important role in the circulation of materials and nutrients between plants and soil ecosystems, but the drivers of microbial community composition and diversity remain uncertain in different vegetation restoration patterns. We studied soil physicochemical properties (i.e., soil moisture, bulk density, pH, soil nutrients, available nutrients), plant characteristics (i.e., Shannon index [HPlant] and Richness index [SPlant], litter biomass [LB], and fine root biomass [FRB]), and microbial variables (biomass, enzyme activity, diversity and composition of bacterial and fungal communities) in different plant succession patterns (Robinia pseudoacacia [MF], Caragana korshinskii [SF] and grassland [GL]) on the Loess Plateau. The herb communities, soil microbial biomass and enzyme activities were strongly affected by vegetation restoration. And soil bacterial and fungal communities were significantly different from each other at the sites. Furthermore, LB and FRB were significantly positively correlated with SBacteria, soil microbial biomass, enzyme activities, Proteobacteria, Zygomycota and Cercozoa, while negatively correlated with Actinobacteria and Basidiomycota. In addition, soil water content (SW), pH and nutrients have important effects on the bacterial and fungal diversities, Acidobacteria, Proteobacteria, Nitrospirae, Zygomycota and microbial biomass. Furthermore, plant characteristics and soil properties modulated the composition and diversity of soil microorganisms, respectively. Overall, the relative contribution of vegetation and soil to the diversity and composition of soil bacterial and fungal communities illustrated that plant characteristics and soil properties may synergistically modulate soil microbial communities. And soil bacterial and fungal communities mainly depend on plant biomass and soil nutrients.


2020 ◽  
Author(s):  
Wei Yang ◽  
Yupeng Guan ◽  
Cheng Zhai ◽  
Lin Du ◽  
Yanxiang Wu ◽  
...  

Abstract Background: Tillage practices and residue management are highly important agricultural practices. However, very few studies have examined the influence of tillage practices and residue management on both bacterial and fungal communities and network patterns in consecutive years. Results: We examined the effects of different tillage practices, including no tillage, rotary tillage, and deep tillage, on the soil bacterial and fungal communities and co-occurrence networks following residue removal and residue retention in 2017 and 2018. This study showed that both bacterial and fungal communities were unaffected by tillage practices in 2017, but they were significantly influenced in 2018. In addition, soil fungal operational taxonomic unit (OTU) richness was significantly enhanced by deep tillage compared with no tillage in 2018, while bacterial OTU richness was unaffected in either year. Tillage practices had differing effects on the soil microbial network patterns, with rotary and deep tillage increasing the complexity of bacterial networks but simplifying fungal networks. However, residue retention only induced a shift in the fungal community in 2018 without an obvious effect in the bacterial community in both years. In addition, residue retention simplified soil bacterial and fungal networks in 2018. Conclusions: This study highlighted the dissimilar responses of bacterial and fungal networks to tillage practices and emphasized that tillage practice is more important than residue management in shaping soil microbial communities.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Marie-Thérèse Mofini ◽  
Abdala G. Diedhiou ◽  
Marie Simonin ◽  
Donald Tchouomo Dondjou ◽  
Sarah Pignoly ◽  
...  

AbstractFungal communities associated with roots play a key role in nutrient uptake and in mitigating the abiotic and biotic stress of their host. In this study, we characterized the roots mycobiome of wild and cultivated pearl millet [Pennisetum glaucum (L.) R. Br., synonym: Cenchrus americanus (L.) Morrone] in three agro-ecological areas of Senegal following a rainfall gradient. We hypothesized that wild pearl millet could serve as a reservoir of endophytes for cultivated pearl millet. We therefore analyzed the soil factors influencing fungal community structure and whether cultivated and wild millet shared the same fungal communities. The fungal communities associated with pearl millet were significantly structured according to sites and plant type (wild vs cultivated). Besides, soil pH and phosphorus were the main factors influencing the fungal community structure. We observed a higher fungal diversity in cultivated compared to wild pearl millet. Interestingly, we detected higher relative abundance of putative pathotrophs, especially plant pathogen, in cultivated than in wild millet in semi-arid and semi-humid zones, and higher relative abundance of saprotrophs in wild millet in arid and semi-humid zones. A network analysis based on taxa co-occurrence patterns in the core mycobiome revealed that cultivated millet and wild relatives had dissimilar groups of hub taxa. The identification of the core mycobiome and hub taxa of cultivated and wild pearl millet could be an important step in developing microbiome engineering approaches for more sustainable management practices in pearl millet agroecosystems.


2022 ◽  
Author(s):  
Yajiao Wang ◽  
Yu Liu ◽  
Yuxing Wu ◽  
Nan Wu ◽  
Wenwen Liu ◽  
...  

Abstract Background: As genetic entities infecting and replicating only in bacteria, bacteriophages can regulate the community structure and functions of their host bacteria, but they are often overlooked because of their relatively low abundance. The ecological roles of bacteriophages in aquatic and forest environments have been widely explored, but those in agroecosystems remains limited. Here, we used metagenomic sequencing to analyze the diversity and interactions of bacteriophages and their host bacteria in soils from three typical rice agroecosystems in China: double cropping in Guangzhou, southern China, rice–wheat rotation cropping in Nanjing, eastern China and early maturing single cropping in Jiamusi, northeastern China. Bacteriophages were isolated and their functions on soil nitrogen cycling and effect on soil bacterial community structure were verified in pot inoculation experiments and Illumina MiSeq sequencing.Results: Soil bacterial and viral diversity and functions varied among the three agroecosystems. Genes detected in communities from the three agroecosystems were associated with typical functions; soil bacteria in Jiamusi were significantly enriched in genes related to carbohydrate metabolism, in Nanjing with xenobiotics biodegradation and metabolism, and in Guangzhou with virulence factors and scarce in secondary metabolite biosynthesis, which might lead to a significant occurrence of rice bacterial diseases. In the three ecosystems, 368 species of virus were detected. Notably, over-represented auxiliary carbohydrate-active enzyme (CAZyme) genes were identified in the viruses, which might assist host bacteria in metabolizing carbon, and 67.43% of these genes were present in Jiamusi. In bacteriophage isolation and inoculation experiments, Enterobacter bacteriophage-NJ reduced the nitrogen fixation capacity of soil by lysing N-fixing host bacteria and changed the soil bacterial diversity and community structure.Conclusions: Our results showed that diversity and function of paddy soil bacteria and viruses varied in the three agroecosystems. Soil bacteriophages can affect nutrient cycling by expressing auxiliary metabolic genes (AMGs) and lysing the host bacteria that are involved in biogeochemical cycles. These findings form a basis for better understanding bacterial and bacteriophage diversity in different rice agroecosystems, laying a solid foundation for further studies of soil microbial communities that support ecofriendly production of healthy rice.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 161 ◽  
Author(s):  
Pan Wan ◽  
Gongqiao Zhang ◽  
Zhonghua Zhao ◽  
Yanbo Hu ◽  
Wenzhen Liu ◽  
...  

One of the aims of sustainable forest management is to preserve the diversity and resilience of ecosystems. Unfortunately, changes in the soil microbial communities after forest management remain unclear. We analyzed and compared the soil microbial community of a natural Quercus aliena var. acuteserrata forest after four years of four different management methods using high-throughput sequencing technology. The forest management methods were close-to-nature management (CNFM), structure-based forest management (SBFM), secondary forest comprehensive silviculture (SFCS) and unmanaged control (CK). The results showed that: (1) the soil microbial community diversity indices were not significantly different among the different management methods. (2) The relative abundance of Proteobacteria in the SBFM treatment was lower than in the CK treatment, while the relative abundance of Acidobacteria in the SBFM was significantly higher than that in the CK treatment. The relative abundance of Ascomycota was highest in the CNFM treatment, and that of Basidiomycota was lowest in the CNFM treatment. However, the relative abundance of dominant bacterial and fungal phyla was not significantly different in CK and SFCS. (3) Redundancy analysis (RDA) showed that the soil organic matter (SOM), total nitrogen (TN), and available nitrogen (AN) significantly correlated with the bacterial communities, and the available potassium (AK) was the only soil nutrient, which significantly correlated with the composition of the fungal communities. The short-term SBFM treatment altered microbial bacterial community compositions, which may be attributed to the phyla present (e.g., Proteobacteria and Acidobacteria), and the short-term CNFM treatment altered microbial fungal community compositions, which may be attributed to the phyla present (e.g., Ascomycota and Basidiomycota). Furthermore, soil nutrients could affect the dominant soil microbial communities, and its influence was greater on the bacterial community than on the fungal community.


2020 ◽  
Author(s):  
Yang Yu ◽  
Lang Zheng ◽  
Yijun Zhou ◽  
Weiguo Sang ◽  
Jianing Zhao ◽  
...  

Abstract Aims Grassland degradation represents a major challenge in grassland productivity. This process has dramatic impacts on energy flows and soil nutrient dynamics and therefore may directly or indirectly influence soil microbes residing in surface soils. Here we aim to (1) examine changes in soil microbial composition, diversity, and functionality in response to different levels of grassland degradation (i.e., non-degraded, moderately degraded and severely degraded) in a temperate grassland in Inner Mongolia, and (2) elucidate biotic and abiotic factors that are responsible to these changes. Methods The composition structure of soil microbial community was determined by high-throughput sequencing. The functionality of bacterial communities was examined using the tool of FAPROTAX while functional guilds of fungal communities was quantified using the FUNGuild Pipeline. Important Findings Grassland degradation significantly decreased soil bacterial diversity but had no effect on fungal diversity. Belowground biomass, soil organic carbon, and total nitrogen were positively related to changes in diversity of bacterial community. Grassland degradation significantly increased the relative abundance of Chloroflexi (from 2.48% to 8.40%), and decreased Firmicutes (from 3.62% to 1.08%) of bacterial community. Degradation also significantly increased the relative abundance of Glomeromycota (from 0.17% to 1.53%), and decreased Basidiomycota (from 19.30% to 4.83%) of fungal community. The relative abundance of pathogenic fungi (Didymella and Fusarium) decreased significantly in response to degradation. In addition, degradation had a significant impact on putative functionality of soil bacteria related to soil carbon and nitrogen cycling. Our results suggest that soil bacterial community was more sensitive than fungal community in response to degradation in this temperate grassland.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 84
Author(s):  
Andéole Niyongabo Turatsinze ◽  
Baotian Kang ◽  
Tianqi Zhu ◽  
Fujiang Hou ◽  
Saman Bowatte

Soil microbial composition and diversity are widely recognized for their role in ecological functioning. This study examined the differences of soil microbial communities between two seasonally grazed grasslands. The study area was in the Gansu red deer farm located on the Qilian Mountain range in the Gansu province of northwestern China. This farm adopted a seasonal rotation grazing system whereby grasslands at higher altitudes are grazed in summer (SG), whilst grasslands at lower altitudes are grazed in winter (WG). The soil bacterial and fungal communities were examined by Illumina MiSeq sequencing. We found that soil water content (SWC), organic carbon (OC), total carbon (TC), and total nitrogen (TN) were significantly higher, whereas the C/N ratio was significantly lower in SG than WG pastures. The α-diversity of bacteria was greater than that of fungi in both pastures, while both bacterial and fungal α-diversity were not significantly different between the pastures. The bacterial β-diversity was significantly different between the pastures, but fungal β-diversity was not. The bacterial phylum Actinobacteria and fungal phylum Ascomycota were dominant in both pastures. The relative abundance of Actinobacteria in soil was significantly higher in WG pastures, whereas the relative abundance of Proteobacteria in soil was significantly higher in SG pastures. Significant correlations between bacterial and fungal phyla and soil properties were observed, but this varied between the two grasslands. This study showed that distinct microbial community structures developed in two pastures within the same geographic location that were grazed in different seasons.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 190
Author(s):  
Sangsub Cha ◽  
Yong Suk Kim ◽  
Ah Lim Lee ◽  
Dong-Hyeon Lee ◽  
Namin Koo

Soil acidification caused by anthropogenic activities adversely affects forest ecosystems by altering soil pH, which is an important factor in soil quality and function. Liming is one suggested way to solve this problem. This study was performed to evaluate the effects of liming in acidic forest soils by determining soil microbial biomass, microbial community structure, and extracellular enzyme activities associated with carbon, nitrogen, and phosphorus cycling. Lime treatment increased soil pH by up to 40%, significantly increased organic matter (OM) content at some sites, and altered the enzyme activity of the soil. With liming, the microbial biomass appeared to be affected by the chemical properties of the soil, such as pH, Ca2+, Mg2+, K+, and exchangeable aluminum (Ale) levels, although there were no significant differences at the site level. Enzymatic activity was found to be affected by pH, Ca2+, Mg2+, electrical conductivity (EC), and Ale; and acid phosphatase (AP) and phenol oxidase (POX) activity were significantly affected by lime treatment. AP activity decreased from 0.62 to 0.66, and POX activity increased from 1.75 to 3.00 in part of the sites. The bacterial community richness was influenced by pH as a direct effect of lime treatment. The fungal community richness was associated with changes in K+ that were not due to lime treatment. The bacterial community structure was affected by soil OM, total nitrogen (TN), pH, and Ca2+; and the fungal community structure was affected by pH, Mg2+, and K+. In conclusion, changes in soil environmental conditions by liming can affect soil microbial communities and functions through direct or indirect processes, further changing ecosystem processes.


Sign in / Sign up

Export Citation Format

Share Document