Finite Element Analysis of Tensile Test for HDPE/EPR-MMT Nanocomposite

2015 ◽  
Vol 1115 ◽  
pp. 414-417
Author(s):  
N.M. Shaffiar ◽  
M.K.A. Halim ◽  
H. Anuar ◽  
M.A.H.A. Majid

A small amount of nanodispersed filler leads to an improvement in material properties. Montmorillonite (MMT) is one type of filler commonly used in nanocomposite material. A high density polyethylene/ethylene propylene rubber - montmorillonite (HDPE/EPR-MMT) is one of the nanocomposite material that is new to the industry. This paper investigates the strength of HDPE/EPR-MMT nanocomposite under tensile loading. The experimental results of the tensile test on the nanocomposite will be compared with the tensile simulation in the Finite Element (FE) analysis for validation. The results showed that it is validated with relatively low percentage error of 0.01 % for the ultimate tensile strength and 0.18 % for the yield strength. The ultimate tensile strength of HDPE/EPR-MMT is 14.5 MPa and the yield strength is 13.2 MPa. By using MMT as a filler, the material strength is improved. The ultimate tensile strength of HDPE/EPR without filler is 11.45 MPa and the yield strength is 10.95 MPa.

2015 ◽  
Vol 1115 ◽  
pp. 410-413 ◽  
Author(s):  
N.M. Shaffiar ◽  
M.A. Hasnan ◽  
H. Anuar ◽  
Muataz Hazza Faizi Al Hazza

A small amount of nanodispersed filler leads to an improvement in material properties. Carbon Nanotube (CNT) is one type of filler used in nanocomposite material. A high density polyethylene/ethylene propylene rubber – carbon nanotube (HDPE/EPR-CNT) is one of the nanocomposite material that is new to the industry. This paper investigates the strength of HDPE/EPR-CNT nanocomposite under tensile loading. The experimental results of the tensile test on the nanocomposite will be compared with the tensile simulation in the Finite Element (FE) analysis for validation. The results showed that it is validated with relatively low percentage error of 0.14 % for the ultimate tensile strength and 0.05 % for the yield strength. The ultimate tensile strength of HDPE/EPR-CNT is 17.41 MPa and the yield strength is 14.9 MPa. By using CNT as a filler, the material strength is improved. The ultimate tensile strength of HDPE/EPR-CNT is the highest compared to polyethylene/ethylene propylene rubber - montmorillonite HDPE/EPR-MMT and polyethylene/ethylene propylene rubber HDPE/EPR.


2000 ◽  
Vol 123 (1) ◽  
pp. 150-154
Author(s):  
John H. Underwood ◽  
Michael J. Glennon

Laboratory fatigue life results are summarized from several test series of high-strength steel cannon breech closure assemblies pressurized by rapid application of hydraulic oil. The tests were performed to determine safe fatigue lives of high-pressure components at the breech end of the cannon and breech assembly. Careful reanalysis of the fatigue life tests provides data for stress and fatigue life models for breech components, over the following ranges of key parameters: 380–745 MPa cyclic internal pressure; 100–160 mm bore diameter cannon pressure vessels; 1040–1170 MPa yield strength A723 steel; no residual stress, shot peen residual stress, overload residual stress. Modeling of applied and residual stresses at the location of the fatigue failure site is performed by elastic-plastic finite element analysis using ABAQUS and by solid mechanics analysis. Shot peen and overload residual stresses are modeled by superposing typical or calculated residual stress distributions on the applied stresses. Overload residual stresses are obtained directly from the finite element model of the breech, with the breech overload applied to the model in the same way as with actual components. Modeling of the fatigue life of the components is based on the fatigue intensity factor concept of Underwood and Parker, a fracture mechanics description of life that accounts for residual stresses, material yield strength and initial defect size. The fatigue life model describes six test conditions in a stress versus life plot with an R2 correlation of 0.94, and shows significantly lower correlation when known variations in yield strength, stress concentration factor, or residual stress are not included in the model input, thus demonstrating the model sensitivity to these variables.


2004 ◽  
Vol 449-452 ◽  
pp. 305-308
Author(s):  
Lei Wang ◽  
Toshiro Kobayashi ◽  
Chun Ming Liu

Tensile test at loading velocities up to 10 m·s-1(strain rate up to 3.2x102s-1) was carried out forr SiCp/AC4CH composite and AC4CH alloy. The microstructure of the composite before and after tensile deformation was carefully examined with both optical microscope and SEM. The experimental results demonstrated that the ultimate tensile strength (UTS) and yield strength (YS) increase with increasing loading velocity up to 10 m·s-1. Comparing with AC4CH alloy, the fracture elongation of the composite is sensitivity with the increasing strain rate. The YS of both the composite and AC4CH alloy shows more sensitive than that of the UTS with the increasing strain rate, especially in the range of strain rate higher than 102s-1.


2011 ◽  
Vol 682 ◽  
pp. 49-54
Author(s):  
Bin Chen ◽  
Chen Lu ◽  
Dong Liang Lin ◽  
Xiao Qin Zeng

The Mg96Y3Zn1 alloy processed by equal channel angular pressing has been investigated. It was found that the Mg96Y3Zn1 alloy processed by ECAP obtained ultrafine grains and exhibits excellent mechanical properties. After ECAP, the average grain size of Mg96Y3Zn1 alloy refined to about 400 nm. The highest strengths with yield strength of 381.45MPa and ultimate tensile strength of 438.33MPa were obtained after 2 passes at 623K. It was found that cracks were preferentially initiated and propagated in the interior of X-phase during the tensile test. As a result, the elongation of alloy is decreased with pass number increasing.


2019 ◽  
Vol 20 (2) ◽  
pp. 197-210
Author(s):  
Sharifah Imihezri Syed Shaharuddin ◽  
Abdul Rahman Mukhtar ◽  
Nur Atiqah Mohd. Akhir ◽  
Norhashimah Shaffiar ◽  
Maizatulnisa Othman

A combined experimental and finite element analysis () investigation was performed to study the effect of incorporating poly(propylene carbonate)(PPC) and curcumin on the mechanical properties of poly(lactic acid) (PLA). In addition, the chemical interaction and morphological changes brought upon by each subsequent additive were also observed. The addition of PPC at 30 wt% into PLA causes a decrease in strength and modulus by 51% and 68% respectively whilst inducing higher elongation by 74%.  The resultant decrease in strength and modulus of the PLA/PPC blend was recovered by adding a low weight percentage (1 wt%) of curcumin. The images of the fractured surfaces via scanning electron microscope () revealed the brittle-ductile-brittle progression of PLA due to the addition of PPC and curcumin which corroborates the findings from the tensile test. Fourier-transform infrared spectroscopy () revealed that the addition of PPC by 30 wt % resulted in chemical interaction between the carbonyl groups of PLA and PPC  as the C=O peak of PLA slightly shifted to a lower wavenumber. The presence of curcumin peaks however was found to be difficult to be identified in the PLA/PPC/curcumin blend. The simulated results for the stress-strain profile using FEA agreed well with the experimental tensile test profile with a relatively low percentage error of less than 6%. Therefore, it was concluded that for these compositions, the developed model can be used for further simulation works to design biomedical devices. ABSTRAK: Gabungan penyelidikan secara eksperimen dan analisis unsur terhad (FEA) telah dijalankan bagi mengkaji kesan campuran poli (propilen karbonat) (PPC) dan kurkumin pada sifat mekanikal poli (asid laktik) (PLA). Tambahan, interaksi kimia dan perubahan morfologi pada setiap penambahan berikutnya turut diperhatikan. Penambahan PPC pada 30 wt% ke dalam PLA menyebabkan pengurangan pada tenaga dan modulus sebanyak 51% dan 68% masing-masing sementara menyebabkan kenaikan pemanjangan sebanyak 74%. Hasil pengurangan pada tenaga dan modulus campuran PLA/PPC diseimbangkan dengan mencampurkan peratus kurkumin kurang berat (1 wt%). Melalui mikroskop imbasan elektron (SEM), didapati imej permukaan retak menunjukkan PLA berturutan rapuh-mulur-rapuh disebabkan penambahan PPC dan kurkumin di mana ianya menyokong dapatan kajian ini melalui ujian kekuatan tegangan. Spektroskopi Inframerah Jelmaan Fourier (FTIR) menunjukkan dengan penambahan PPC sebanyak 30 wt %, interaksi kimia antara kumpulan karbonil PLA dan PPC pada puncak C=O PLA telah berubah sedikit kepada nombor gelombang lebih kecil. Walau bagaimanapun, kehadiran puncak kurkumin adalah sukar dikenal pasti dalam campuran PLA/PPC/kurkumin. Dapatan hasil simulasi pada profil strain-tekanan menggunakan FEA adalah sama dengan ujian kekuatan tegangan dengan peratus ralat yang agak rendah iaitu kurang daripada 6%. Oleh itu, komposisi model yang dibangunkan ini adalah sesuai bagi meneruskan kerja-kerja simulasi iaitu bagi mereka bentuk alat biomedikal.             


2020 ◽  
Vol 27 (3) ◽  
pp. 121-129
Author(s):  
Yao Zilin ◽  
Wang Yu ◽  
Yang Xuefeng ◽  
Gao Anping ◽  
Zhang Rong ◽  
...  

AbstractDue to the complexity of the marine environment, in deep-sea drilling, all kinds of strings are corroded by different deep-sea conditions for a long time, accompanied by high temperature and high pressure, which lead to the continuous change of mechanical properties of materials. In order to solve the problem that the material mechanical parameters cannot be accurately described in the performance analysis of the casing, deep-sea simulated corrosion and material damage experiments of P110 material were carried out in this paper. Mass loss and tensile experiments on corrosion-damaged test pieces were conducted under different corrosion experimental periods. The changes in mechanical properties of the material were analyzed. Equations of the variation of the equivalent yield strength and the equivalent tensile strength were obtained. The results show that the equivalent yield strength and the equivalent tensile strength decrease with the increase of the weight loss rate. Based on the experimental results and finite element analysis, a method for establishing the material corrosion model was proposed in this paper. The deep-sea drilling corrosion performance model of P110 material was established, which greatly reduced the error caused by the material uniformity assumption in finite element analysis. This paper provides a theoretical basis for the analysis of reliability and life of P110 materials in wells.


2015 ◽  
Vol 113 (5) ◽  
pp. 460-466 ◽  
Author(s):  
Morgana G. Castro ◽  
Cleudmar A. Araújo ◽  
Gabriela L. Menegaz ◽  
João Paulo L. Silva ◽  
Mauro Antônio A. Nóbilo ◽  
...  

2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040035
Author(s):  
Xiang Cai ◽  
Yanxin Qiao ◽  
Baojie Wang ◽  
Huiling Zhou ◽  
Yuxin Wang

The influence of rolling on nanomechanical and mechanical behavior of Mg-7Li alloy was investigated by nanoindentation, tensile test and scanning electron microscopy (SEM), respectively. The [Formula: see text]-Mg phase elongated along the rolling direction and gradually cracked. As the rolling ratio increased from 3 to 10, the hardness of [Formula: see text]-Mg and [Formula: see text]-Li phase increased by 7.35% and 20.75%, respectively. The fracture of alloys changed from ductile fracture to quasi-cleavage fracture. The yield strength and ultimate tensile strength increased by 23 MPa and 12 MPa, respectively, while elongation reduced by 12.5%.


Sign in / Sign up

Export Citation Format

Share Document