scholarly journals Use of Kluyveromyces marxianus to Increase Free Monoterpenes and Aliphatic Esters in White Wines

Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 79
Author(s):  
Eleonora Barone ◽  
Giovanna Ponticello ◽  
Pieramaria Giaramida ◽  
Margherita Squadrito ◽  
Teresa Fasciana ◽  
...  

An increasing interest in novel wine productions is focused on non-Saccharomyces yeasts due to their potential in improving sensory profiles. Although Kluyveromyces marxianus has been originally isolated from grapes and its enzymatic activities are used in oenology, rarely it has been used as co-starter. The K. marxianus Km L2009 strain has been characterized here and selected as a co-starter both at laboratory- and winery-scale fermentation. The Km L2009 strain showed growth of up to 40 (mg/L) of sulfites and 6% (v/v) of ethanol. Gas chromatographic analysis demonstrates that wines produced by mixed fermentation contain remarkably higher quantities of free monoterpenes and aliphatic esters than wines produced only by commercial strains of Saccharomyces cerevisiae. Differences in the volatile organic compound composition produced sensorially distinct wines. In light of these results, it is possible to state that even within the K. marxianus species it is possible to select strains capable of improving the aromatic quality of wines.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guangsen Fan ◽  
Chao Teng ◽  
Dai Xu ◽  
Zhilei Fu ◽  
Pengxiao Liu ◽  
...  

Ethyl acetate content has strong influence on the style and quality of Baijiu. Therefore, this study investigated the effect of Saccharomyces cerevisiae Y3401 on the production of ethyl acetate by Wickerhamomyces anomalus Y3604. Analysis of cell growth showed that Y3401 influences Y3604 by nutrient competition and inhibition by metabolites, while the effect of Y3604 on Y3401 was mainly competition for nutrients. Mixed fermentation with two yeasts was found to produce more ethyl acetate than a single fermentation. The highest yield of ethyl acetate was 2.99 g/L when the inoculation ratio of Y3401:Y3604 was 1:2. Synergistic fermentation of both yeasts improved ethyl acetate production and increased the content of other flavor compounds in liquid and simulated solid-state fermentation for Baijiu. Saccharomyces cerevisiae had a positive effect on ethyl acetate production in mixed culture and provides opportunities to alter the aroma and flavor perception of Baijiu.



Fermentation ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 76 ◽  
Author(s):  
Ricardo Vejarano

Traditionally, non-Saccharomyces yeasts have been considered contaminants because of their high production of metabolites with negative connotations in wine. This aspect has been changing in recent years due to an increased interest in the use of these yeasts in the winemaking process. The majority of these yeasts have a low fermentation power, being used in mixed fermentations with Saccharomyces cerevisiae due to their ability to produce metabolites of enological interest, such as glycerol, fatty acids, organic acids, esters, higher alcohols, stable pigments, among others. Additionally, existing literature reports various compounds derived from the cellular structure of non-Saccharomyces yeasts with benefits in the winemaking process, such as polysaccharides, proteins, enzymes, peptides, amino acids, or antimicrobial compounds, some of which, besides contributing to improving the quality of the wine, can be used as a source of nitrogen for the fermentation yeasts. These compounds can be produced exogenously, and later incorporated into the winemaking process, or be uptake directly by S. cerevisiae from the fermentation medium after their release via lysis of non-Saccharomyces yeasts in sequential fermentations.



2021 ◽  
Vol 11 (2) ◽  
pp. 801
Author(s):  
Angela Capece ◽  
Deborah De Fusco ◽  
Rocchina Pietrafesa ◽  
Gabriella Siesto ◽  
Patrizia Romano

Nowadays, the increasing interest in new market demand for alcoholic beverages has stimulated the research on useful strategies to reduce the ethanol content in beer. In this context, the use of non-Saccharomyces yeasts to produce low-alcohol or alcohol-free beer may provide an innovative approach for the beer market. In our study, four wild non-Saccharomyces yeasts, belonging to Torulaspora delbrueckii, Candida zemplinina and Zygosaccharomyces bailii species, were tested in mixed fermentation with a wild selected Saccharomyces cerevisiae strain as starters for fermentation of different commercial substrates used for production of different beer styles (Pilsner, Weizen and Amber) to evaluate the influence of the fermentative medium on starter behaviour. The results obtained showed the influence of non-Saccharomyces strains on the ethanol content and organoleptic quality of the final beers and a significant wort–starter interaction. In particular, each starter showed a different sugar utilization rate in each substrate, in consequence of uptake efficiency correlated to the strain-specific metabolic pathway and substrate composition. The most suitable mixed starter was P4-CZ3 (S. cerevisiae–C. zemplinina), which is a promising starter for the production of low-alcohol beers with pleasant organoleptic characteristics in all the tested fermentation media.



2021 ◽  
Author(s):  
Angela Capece ◽  
Angela Pietrafesa ◽  
Gabriella Siesto ◽  
Rocchina Pietrafesa ◽  
Victor Garrigos ◽  
...  

The bulk of grape juice fermentation is carried out by the yeast Saccharomyces cerevisiae, but non-Saccharomyces yeasts can modulate many sensorial aspects of the final products in ways not well understood. In this study, some of such non-conventional yeasts were screened as mixed starter cultures in a fermentation defined medium in both simultaneous and sequential inoculations. One strain of Starmerella bacillaris and another of Zygosaccharomyces bailii were chosen by their distinct phenotypic footprint and their ability to reduce ethanol levels at the end of fermentation, particularly during simultaneous vinification. S. bacillaris losses viability strongly at the end of mixed fermentation, while Z. bailii remains viable until the end of vinification. Interestingly, for most non-Saccharomyces yeasts, simultaneous inoculation helps for survival at the end of fermentation compared to sequential inoculation. S. cerevisiae viability was unchanged by the presence of the either yeast. Characterization of both strains indicates that S. bacillaris behavior is overall more different from S. cerevisiae than Z. bailii. S. bacillaris has a less strict glucose repression mechanism and molecular markers like catabolite repression kinase Snf1 is quite different in size. Besides, S. cerevisiae transcriptome changes to a bigger degree in the presence of S. bacillaris than when inoculated with Z. bailii. S. bacillaris induces the translation machinery and repress vesicular transport. Both non-Saccharomyces yeast induce S. cerevisiae glycolytic genes, and that may be related to ethanol lowering, but there are specific aspects of carbon-related mechanisms between strains: Z. bailii presence increases the stress-related polysaccharides trehalose and glycogen while S. bacillaris induces gluconeogenesis genes.



Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 126
Author(s):  
Jesse J. Aplin ◽  
Victoria D. Paup ◽  
Carolyn F. Ross ◽  
Charles G. Edwards

Inoculation of selected non-Saccharomyces yeasts with Saccharomyces cerevisiae as means to produce Merlot wines with reduced ethanol contents was investigated. Fermentations of grape musts (25.4° Brix, pH 3.50, and 4.23 g/L titratable acidity) were conducted in stainless steel tanks inoculated with Metschnikowia pulcherrima strains P01A016 or NS-MP or Meyerozyma guilliermondii P40D002 with S. cerevisiae Syrah added after three days. After fermentation, wines with Mt. pulcherrima contained 13.8% (P01A016) or 13.9% (NS-MP) v/v ethanol, respectively, amounts which were lower than in wines with S. cerevisiae alone (14.9% v/v). Delayed inoculation of must with S. cerevisiae (day 3) or musts with My. guilliermondii contained elevated concentrations of ethyl acetate (145 and 148 mg/L, respectively), concentrations significantly higher than those with S. cerevisiae inoculated on day 0 or with either strain of Mt. pulcherrima. Descriptive sensory analysis revealed a significant effect due to panelist but not due to Mt. pulcherrima or My. guilliermondii. This research indicates the potential for commercial application of these yeasts towards the production of reduced alcohol wines but without imparting negative sensory attributes.



Fermentation ◽  
2019 ◽  
Vol 5 (4) ◽  
pp. 94 ◽  
Author(s):  
García ◽  
Esteve-Zarzoso ◽  
Crespo ◽  
Cabellos ◽  
Arroyo

Yeasts during alcoholic fermentation form a vast number of volatile compounds that significantly influence wine character and quality. It is well known that the capacity to form aromatic compounds is dependent on the yeast strain. Thus, the use of native yeast strains, besides promoting biodiversity, encourages the conservation of regional sensory properties. In this work, we studied the volatile profile of Malvar wines fermented with 102 Saccharomyces cerevisiae yeast strains, isolated from vineyards and cellars belonging to the D.O. “Vinos de Madrid”. The wines elaborated with different S. cerevisiae showed a good classification by cellar of origin. Additionally, seven sensory descriptors have helped to classify the wines depending on their predominant aromatic character. Twenty-nine Saccharomyces strains, belonging to five of six cellars in the study, were characterized by producing wines with a fruity/sweet character. Floral, solvent, and herbaceous descriptors are more related to wines elaborated with Saccharomyces strains from organic cellars A, E, and F. Based on these findings, winemakers may use their best native S. cerevisiae strains, which add personality to their wine. Therefore, this study contributes to promoting the use of native Saccharomyces yeasts in winemaking.



Fermentation ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 66 ◽  
Author(s):  
Juan Manuel Del Fresno ◽  
Carlos Escott ◽  
Iris Loira ◽  
José Enrique Herbert-Pucheta ◽  
Rémi Schneider ◽  
...  

Hanseniaspora vineae is an apiculate yeast that plays a significant role at the beginning of fermentation, and it has been studied for its application in the improvement of the aromatic profile of commercial wines. This work evaluates the use of H. vineae in alcoholic fermentation compared to Saccharomyces cerevisiae and in ageing on the lees process (AOL) compared to Saccharomyces and non-Saccharomyces yeasts. The results indicated that there were not significant differences in basic oenological parameters. H. vineae completed the fermentation until 11.9% v/v of ethanol and with a residual sugars content of less than 2 g/L. Different aroma profiles were obtained in the wines, with esters concentration around 90 mg/L in H. vineae wines. Regarding the AOL assay, the hydroalcoholic solutions aged with H. vineae lees showed significantly higher absorbance values at 260 (nucleic acids) and 280 nm (proteins) compared to the other strains. However, non-significant differences were found in the polysaccharide content at the end of the ageing process were found compared to the other yeast species, with the exception of Schizosaccharomyces pombe that released around 23.5 mg/L of polysaccharides in hydroalcoholic solution. The use of H. vineae by the wineries may be a viable method in fermentation and AOL to improve the quality of white wines.



2012 ◽  
Vol 46 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Antonio Scacco ◽  
Daniele Oliva ◽  
Sabina Di Maio ◽  
Giuseppe Polizzotto ◽  
Giuseppe Genna ◽  
...  


2015 ◽  
Vol 4 (2) ◽  
pp. 50-55
Author(s):  
Sandra J Nendissa ◽  
Rachel Breemer ◽  
Nikholaus Melamas

This objectives of this research were both to study and determine the best level of concentration of yeast Saccharomyces cereviseae and period of fermentation on the quality of tomi-tomi vinegar (Flacourtia inermis). A completely randomized experimental design with two factors of treatment was applied in this research. The first factor was concentration of yeast S. cereviseae having four levels of tretament, i.e.: without the addition of yeast 0.5, 1 and 1.5 g yeast. The second factor was period fermentation with 1, 2, 3, 4, and 5 weeks. The result indicated that the concentration of yeast S. cereviseae 1.5 g and period fermentation 5 week produced a good tomi-tomi vinegar with total acids 51.22%, total dissolved solids 8.35, total sugar 8.07% and pH 5.40.



Sign in / Sign up

Export Citation Format

Share Document