scholarly journals Energy Efficient Communications for Reliable IoT Multicast 5G/Satellite Services

2019 ◽  
Vol 11 (8) ◽  
pp. 164 ◽  
Author(s):  
Francesco Chiti ◽  
Romano Fantacci ◽  
Laura Pierucci

Satellites can provide strong value-add and complementarity with the new cellular system of the fifth generation (5G) in cost-effective solutions for a massive number of users/devices/things. Due to the inherent broadcast nature of satellite communications, which assures access to remote areas and the support to a very large number of devices, satellite systems will gain a major role in the development of the Internet of Things (IoT) sector. In this vision, reliable multicast services via satellite can be provided to deliver the same content efficiently to multiple devices on the Earth, or for software updating to groups of cars in the Machine-to-Machine (M2M) context or for sending control messages to actuators/IoT embedded devices. The paper focuses on the Network coding (NC) techniques applied to a hybrid satellite/terrestrial network to support reliable multicast services. An energy optimization method is proposed based on joint adaptation of: (i) the repetition factor of data symbols on multiple subcarries of the transmitted orthogonal frequency division multiplexing (OFDM) signal; and (ii) the mean number of needed coded packets according to the requirements of each group and to the physical satellite links conditions.

Author(s):  
Tochukwu Moses ◽  
David Heesom ◽  
David Oloke ◽  
Martin Crouch

The UK Construction Industry through its Government Construction Strategy has recently been mandated to implement Level 2 Building Information Modelling (BIM) on public sector projects. This move, along with other initiatives is key to driving a requirement for 25% cost reduction (establishing the most cost-effective means) on. Other key deliverables within the strategy include reduction in overall project time, early contractor involvement, improved sustainability and enhanced product quality. Collaboration and integrated project delivery is central to the level 2 implementation strategy yet the key protocols or standards relative to cost within BIM processes is not well defined. As offsite construction becomes more prolific within the UK construction sector, this construction approach coupled with BIM, particularly 5D automated quantification process, and early contractor involvement provides significant opportunities for the sector to meet government targets. Early contractor involvement is supported by both the industry and the successive Governments as a credible means to avoid and manage project risks, encourage innovation and value add, making cost and project time predictable, and improving outcomes. The contractor is seen as an expert in construction and could be counter intuitive to exclude such valuable expertise from the pre-construction phase especially with the BIM intent of äóÖbuild it twiceäó», once virtually and once physically. In particular when offsite construction is used, the contractoräó»s construction expertise should be leveraged for the virtual build in BIM-designed projects to ensure a fully streamlined process. Building in a layer of automated costing through 5D BIM will bring about a more robust method of quantification and can help to deliver the 25% reduction in overall cost of a project. Using a literature review and a case study, this paper will look into the benefits of Early Contractor Involvement (ECI) and the impact of 5D BIM on the offsite construction process.


Author(s):  
Teodor Narytnik ◽  
Vladimir Saiko

The technical aspects of the main promising projects in the segments of medium and low-orbit satellite communication systems are considered, as well as the project of the domestic low-orbit information and telecommunications system using the terahertz range, which is based on the use of satellite platforms of the micro- and nanosatellite class and the distribution of functional blocks of complex satellite payloads more high-end on multiple functionally related satellites. The proposed system of low-orbit satellite communications represents the groupings of low-orbit spacecraft (LEO-system) with the architecture of a "distributed satellite", which include the groupings of the root (leading) satellites and satellite repeaters (slaves). Root satellites are interconnected in a ring network by high-speed links between the satellites. The geometric size of the “distributed satellite” is the area around the root satellite with a radius of about 1 km. The combination of beams, which are formed by the repeater satellites, make up the service area of the LEO system. The requirements for the integrated service area of the LEO system (geographical service area) determine the requirements for the number of distributed satellites in the system as a whole. In the proposed system to reduce mutual interference between the grouping of the root (leading) satellites and repeater satellites (slaves) and, accordingly, minimizing distortions of the information signal when implementing inter-satellite communication, this line (radio channel) was created in an unlicensed frequency (e.g., in the terahertz 140 GHz) range. In addition, it additionally allows you to minimize the size of the antennas of such a broadband channel and simplify the operation of these satellite systems.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4649
Author(s):  
İsmail Hakkı ÇAVDAR ◽  
Vahit FERYAD

One of the basic conditions for the successful implementation of energy demand-side management (EDM) in smart grids is the monitoring of different loads with an electrical load monitoring system. Energy and sustainability concerns present a multitude of issues that can be addressed using approaches of data mining and machine learning. However, resolving such problems due to the lack of publicly available datasets is cumbersome. In this study, we first designed an efficient energy disaggregation (ED) model and evaluated it on the basis of publicly available benchmark data from the Residential Energy Disaggregation Dataset (REDD), and then we aimed to advance ED research in smart grids using the Turkey Electrical Appliances Dataset (TEAD) containing household electricity usage data. In addition, the TEAD was evaluated using the proposed ED model tested with benchmark REDD data. The Internet of things (IoT) architecture with sensors and Node-Red software installations were established to collect data in the research. In the context of smart metering, a nonintrusive load monitoring (NILM) model was designed to classify household appliances according to TEAD data. A highly accurate supervised ED is introduced, which was designed to raise awareness to customers and generate feedback by demand without the need for smart sensors. It is also cost-effective, maintainable, and easy to install, it does not require much space, and it can be trained to monitor multiple devices. We propose an efficient BERT-NILM tuned by new adaptive gradient descent with exponential long-term memory (Adax), using a deep learning (DL) architecture based on bidirectional encoder representations from transformers (BERT). In this paper, an improved training function was designed specifically for tuning of NILM neural networks. We adapted the Adax optimization technique to the ED field and learned the sequence-to-sequence patterns. With the updated training function, BERT-NILM outperformed state-of-the-art adaptive moment estimation (Adam) optimization across various metrics on REDD datasets; lastly, we evaluated the TEAD dataset using BERT-NILM training.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2963
Author(s):  
Melinda Timea Fülöp ◽  
Miklós Gubán ◽  
György Kovács ◽  
Mihály Avornicului

Due to globalization and increased market competition, forwarding companies must focus on the optimization of their international transport activities and on cost reduction. The minimization of the amount and cost of fuel results in increased competition and profitability of the companies as well as the reduction of environmental damage. Nowadays, these aspects are particularly important. This research aims to develop a new optimization method for road freight transport costs in order to reduce the fuel costs and determine optimal fueling stations and to calculate the optimal quantity of fuel to refill. The mathematical method developed in this research has two phases. In the first phase the optimal, most cost-effective fuel station is determined based on the potential fuel stations. The specific fuel prices differ per fuel station, and the stations are located at different distances from the main transport way. The method developed in this study supports drivers’ decision-making regarding whether to refuel at a farther but cheaper fuel station or at a nearer but more expensive fuel station based on the more economical choice. Thereafter, it is necessary to determine the optimal fuel volume, i.e., the exact volume required including a safe amount to cover stochastic incidents (e.g., road closures). This aspect of the optimization method supports drivers’ optimal decision-making regarding optimal fuel stations and how much fuel to obtain in order to reduce the fuel cost. Therefore, the application of this new method instead of the recently applied ad-hoc individual decision-making of the drivers results in significant fuel cost savings. A case study confirmed the efficiency of the proposed method.


2012 ◽  
Vol 15 (2) ◽  
pp. 607-619 ◽  
Author(s):  
A. L. Yang ◽  
G. H. Huang ◽  
X. S. Qin ◽  
L. Li ◽  
W. Li

A simulation-based fuzzy optimization method (SFOM) was proposed for regional groundwater pumping management in considering uncertainties. SFOM enhanced the traditional groundwater management models by incorporating a response matrix model (RMM) into a fuzzy chance-constrained programming (FCCP) framework. RMM was used to approximate the input–output relationship between pumping actions and subsurface hydrologic responses. Due to its explicit expression, RMM could be easily embedded into an optimization model to help seek cost-effective pumping solutions. A groundwater management case in Pinggu District of Beijing, China, was used to demonstrate the method's applicability. The study results showed that the obtained system cost and pumping rates would vary significantly under different confidence levels of constraints satisfaction. The decision-makers could identify the best groundwater pumping strategy through analyzing the tradeoff between the risk of violating the related water resources conservation target and the economic benefit. Compared with traditional approaches, SFOM was particularly advantageous in linking simulation and optimization models together, and tackling uncertainties using fuzzy chance constraints.


Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 292 ◽  
Author(s):  
Daniele Sampietro ◽  
Ahmed Mansi ◽  
Martina Capponi

Airborne gravimetry represents nowadays probably the most efficient technique to collect gravity observations close to the Earth’s surface. In the 1990s, thanks to the development of the Global Navigation Satellite Systems (GNSS), which has made accurate navigational data available, this technique started to spread worldwide because of its capability to provide measurements in a fast and cost-effective way. Differently from other techniques such as shipborne gravimetry, it has the advantage to provide gravity measurements also in challenging environments which can be difficult to access otherwise, like mountainous areas, rain forests and polar regions. For such reasons, airborne gravimetry is used for various applications related to the regional gravity field modelling: from the computation of high accurate local geoid for geodetic applications to geophysical ones, specifically related to oil and gas exploration activities or more in general for regional geological studies. Depending on the different kinds of application and the final required accuracy, the definition of the main characteristics of the airborne survey, e.g., the planar distance between consecutive flight tracks, the aircraft velocity, etc., can be a difficult task. In this work, we present a new software package, which would help in properly accomplishing the survey design task. Basically, the developed software solution allows for generating a realistic (from the observation noise point of view) gravimetric signal, and, after that, to predict the accuracy and spatial resolution of the final retrievable gravimetric field, in terms of gravity disturbances, given the flight main characteristics. The proposed procedure is suited for airborne survey planning in order to be able to optimize the design of the survey according to the required final accuracy. With the aim to evaluate the influence of the various survey parameters on the expected accuracy of the airborne survey, different numerical tests have been performed on simulated and real datasets. For instance, it has been shown that if the observation noise is not properly modeled in the data filtering step, the survey results degrade about 25%, while not acquiring control lines during the survey will basically reduce the final accuracy by a factor of two.


Author(s):  
Cesar A. Cortes-Quiroz ◽  
Alireza Azarbadegan ◽  
Emadaldin Moeendarbary ◽  
Mehrdad Zangeneh

Numerical simulations and an optimization method are used to study the design of a planar T-micromixer with curved-shaped baffles in the mixing channel. The mixing efficiency and the pressure loss in the mixing channel have been evaluated for Reynolds number (Re) in the mixing channel in the range 1 to 250. A Mixing index (Mi) has been defined to quantify the mixing efficiency. Three geometric dimensions: radius of baffle, baffles pitch and height of the channel, are taken as design parameters, whereas the mixing index at the outlet section and the pressure loss in the mixing channel are the performance parameters used to optimize the micromixer geometry. To investigate the effect of design and operation parameters on the device performance, a systematic design and optimization methodology is applied, which combines Computational Fluid Dynamics (CFD) with an optimization strategy that integrates Design of Experiments (DOE), Surrogate modeling (SM) and Multi-Objective Genetic Algorithm (MOGA) techniques. The Pareto front of designs with the optimum trade-offs of mixing index and pressure loss is obtained for different values of Re. The micromixer can enhance mixing using the mechanisms of diffusion (lower Re) and convection (higher Re) to achieve values over 90%, in particular for Re in the order of 100 that has been found the cost-effective level for volume flow. This study applies a systematic procedure for evaluation and optimization of a planar T-mixer with baffles in the channel that promote transversal 3-D flow as well as recirculation secondary flows that enhance mixing.


2021 ◽  
Vol 16 (7) ◽  
pp. 130-135
Author(s):  
Shruti Shukla ◽  
Anjali Padhiar

Lignin peroxidase belongs to ligninolytic enzyme group and is one of the industrial important enzymes as it has wide applications in different sectors. Lignin peroxidase is produced by submerged fermentation process which requires optimization of physical and chemical parameters to achieve higher activity and make the process cost effective. The present study aimed at the optimization of physical as well chemical parameters of production medium. The optimization includes physical parameter such as incubation time, inoculum size, temperature, pH, RPM (Rotation per minute) while chemical parameters include carbon source, nitrogen source and different mineral elements. Form the optimization study, it was observed that highest lignin peroxidase production was achieved after 72 hours of incubation at temperature 300C, pH 6 and RPM 120. Optimization of chemical parameters reveals that incorporation of sodium nitrite (9g/L) in the media gave significant increase in enzyme activity. It was found that the maximum productivity achieved after optimization was 2214 U/ml which was four times higher than process without optimized parameters.


Author(s):  
Raja Ramanathan

Software Architecture has evolved from simple monolithic system designs to complex, multi-tiered, distributed, and componentized abstractions. Service-driven architectural approaches have been a major driver for enabling agile, cost-effective, flexible, and extensible software applications and integration solutions that support the business dynamics of today’s fast-paced enterprises. SOA and the SCA model have been the typical Service-driven architectural approaches used in enterprises today, to tackle the challenges of developing and implementing agile and loosely coupled software and enterprise integration solutions. Recent trends involve the use of Web APIs and RESTful architecture in the enterprise for agile service development and application integration. The goal of this chapter is to explore, discuss, and recommend methodologies for Service-driven Computing in the enterprise. Service versioning is detailed as a primary architectural approach for accommodating modifications to services during their life cycle. Service Mediation, Enterprise Service Bus, and Composition mechanisms including Enterprise Mashups are explored. The chapter also presents the business value of APIs in the enterprise and investigates the value-add to Social Media and Cloud enterprise initiatives. The typical phases of a Service-driven development life cycle are explained and service design patterns to facilitate the engineering of flexible service-based applications are described. The chapter concludes with thoughts on future opportunities and challenges in the area of Service-driven computing.


Sign in / Sign up

Export Citation Format

Share Document