scholarly journals Impact of the Simulated Gastric Digestion Methodology on the In Vitro Intestinal Proteolysis and Lipolysis of Emulsion Gels

Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 321
Author(s):  
Camila Mella ◽  
Michelle Quilaqueo ◽  
Rommy N. Zúñiga ◽  
Elizabeth Troncoso

The aim of this work was to study the impact of the methodology of in vitro gastric digestion (i.e., in terms of motility exerted and presence of gastric emptying) and gel structure on the degree of intestinal proteolysis and lipolysis of emulsion gels stabilized by whey protein isolate. Emulsions were prepared at pH 4.0 and 7.0 using two homogenization pressures (500 and 1000 bar) and then the emulsions were gelled by heat treatment. These gels were characterized in terms of texture analysis, and then were subjected to one of the following gastric digestion methods: in vitro mechanical gastric system (IMGS) or in vitro gastric digestion in a stirred beaker (SBg). After gastric digestion, the samples were subjected to in vitro intestinal digestion in a stirred beaker (SBi). Hardness, cohesiveness, and chewiness were significantly higher in gels at pH 7.0. The degree of proteolysis was higher in samples digested by IMGS–SBi (7–21%) than SBg–SBi (3–5%), regardless of the gel’s pH. For SBg–SBi, the degree of proteolysis was not affected by pH, but when operating the IMGS, higher hydrolysis values were obtained for gels at pH 7.0 (15–21%) than pH 4.0 (7–13%). Additionally, the percentage of free fatty acids (%FFA) released was reduced by 47.9% in samples digested in the IMGS–SBi. For the methodology SBg–SBi, the %FFA was not affected by the pH, but in the IMGS, higher values were obtained for gels at pH 4.0 (28–30%) than pH 7.0 (15–19%). Our findings demonstrate the importance of choosing representative methods to simulate food digestion in the human gastrointestinal tract and their subsequent impact on nutrient bioaccessibility.

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1379
Author(s):  
Nan Luo ◽  
Aiqian Ye ◽  
Frances M. Wolber ◽  
Harjinder Singh

This study investigated the effect of gel structure on the digestion of heat-set whey protein emulsion gels containing capsaicinoids (CAP), including the bioaccessibility of CAP. Upon heat treatment at 90 °C, whey protein emulsion gels containing CAP (10 wt% whey protein isolate, 20 wt% soybean oil, 0.02 wt% CAP) with different structures and gel mechanical strengths were formed by varying ionic strength. The hard gel (i.e., oil droplet size d4,3 ~ 0.5 µm, 200 mM NaCl), with compact particulate gel structure, led to slower disintegration of the gel particles and slower hydrolysis of the whey proteins during gastric digestion compared with the soft gel (i.e., d4,3 ~ 0.5 µm, 10 mM NaCl). The oil droplets started to coalesce after 60 min of gastric digestion in the soft gel, whereas minor oil droplet coalescence was observed for the hard gel at the end of the gastric digestion. In general, during intestinal digestion, the gastric digesta from the hard gel was disintegrated more slowly than that from the soft gel. A power-law fit between the bioaccessibility of CAP (Y) and the extent of lipid digestion (X) was established: Y = 49.2 × (X – 305.3)0.104, with R2 = 0.84. A greater extent of lipid digestion would lead to greater release of CAP from the food matrix; also, more lipolytic products would be produced and would participate in micelle formation, which would help to solubilize the released CAP and therefore result in their higher bioaccessibility.


2021 ◽  
Vol 12 (6) ◽  
pp. 2760-2771
Author(s):  
Kinley Choki ◽  
Siqi Li ◽  
Aiqian Ye ◽  
Geoffrey B. Jameson ◽  
Harjinder Singh

The dissolution behavior and the structural changes of nHA during dynamic gastric digestion and intestinal digestion were examined. Milk formed a structural clot and significantly retarded the dissolution of nHA during gastric digestion.


2020 ◽  
Vol 26 (5) ◽  
pp. 444-452
Author(s):  
Shengnan Wang ◽  
Guoqiang Shao ◽  
Jinjie Yang ◽  
Hekai Zhao ◽  
Danni Qu ◽  
...  

This study aims to evaluate the effects of soy soluble polysaccharide and soy hull polysaccharide on stability and characteristics of emulsions stabilised by soy protein isolate in an in vitro gastric environment. Zeta potential and particle size were used to investigate the changes of physico-chemical and stability in the three emulsions during in vitro gastric digestion, following the order: soy protein isolate–stability emulsion < soy protein isolate–soy soluble polysaccharide –stability emulsion < soy protein isolate–soy hull polysaccharide–stability emulsion, confirming that coalescence in the soy protein isolate–stability emulsion occurred during in vitro gastric digestion. Optical microscopy and stability measurement (backscattering) also validate that addition of polysaccharide (soy soluble polysaccharide and soy hull polysaccharide) can reduce the effect of simulated gastric fluid (i.e., pH, ionic strength and pepsin) on emulsion stability, especially, soy protein isolate–soy hull polysaccharide–stability emulsion, compared with soy protein isolate–stability emulsion. This suggests that the flocculation behaviours of these emulsions in the stomach lead to a difference in the quantity of oil and the size and structure of the oil droplets, which play a significant role in emulsion digestion in the gastrointestinal tract. This work may indicate a potential application of soy hull polysaccharide for the construction of emulsion food delivery systems.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 998 ◽  
Author(s):  
Xing Li ◽  
Yuxiang Gu ◽  
Shudong He ◽  
Olayemi Eyituoyo Dudu ◽  
Qiming Li ◽  
...  

It is important to evaluate the nutritional quality of milk during the shelf-life, especially during home storage, from a consumer viewpoint. In this study, we investigated the impact of pasteurization (85 °C/15 s) and subsequent storage (at 4 °C for 7 days) on the coagulation behavior of milk and protein digestibility in a dynamic in vitro gastric digestion test. A high level of hydration in curd formed in pasteurized milk upon 7-day cold storage compared to raw and pasteurized milk, indicating fast pepsin diffusion in the interior of curds, increasing the hydrolysis rate. The digesta collected at various time points throughout the gastric digestion were studied using o-phthaldialdehyde (OPA), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), liquid chromatography tandem mass spectrometry (LC-MS/MS), and amino acid analysis. These results showed that milk proteins were hydrolyzed quickly upon a long period of cold storage. Additionally, qualitative and quantitative results obtained using LC-MS/MS exhibited significant differences between samples, especially in pasteurized milk upon cold storage. Processing and storage played a decisive role in bioactive peptide generation. Such knowledge could provide insights into and directions for the storage of pasteurized milk for further clinical studies on protein bioavailability and the generation of bioactive peptides for desired health outcomes.


2018 ◽  
Vol 6 (5) ◽  
Author(s):  
Vamoussa Coulibaly ◽  
N’dri Kouamé ◽  
Atolé Brice Kédi ◽  
Joseph Sei ◽  
Samuel Oyetola

In order to evaluate the impact of clay on the body during digestion, a study of the bioavailability of elements from clay minerals from Anyama and Bingerville (Abidjan district) was performed in vitro. A simulation of the destruction of a solid matrix in the human gastrointestinal tract was undertaken. The analysis of different juices after digestion revealed the presence of numerous inorganic elements essential for biological activity. Green clay of Anyama consisting of chlorite, illite and smectite, released more elements than those of Bingerville, the mineralogy of witch being dominated by kaolinite. The concentration of some ions (Al, Co, Ca, Cu, Fe, Zn, Pb, Si) decreased during the transition from the step of the stomach (pH = 2.5) to that of the small intestine (pH ≈ 7). The proportions of zinc and copper in spite of decrease during the small intestine step, remain superior to the others. To the contrary, an increase was observed for K, Ni and P. Iron and calcium in this series were distinguished by their disappearance during the stage of the small intestine.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2808 ◽  
Author(s):  
Weili Xu ◽  
Yang Yang ◽  
Sophia Xue ◽  
John Shi ◽  
Loong-Tak Lim ◽  
...  

The effects of in vitro batch digestion on water-in-oil-in-water (W/O/W) double emulsions encapsulated with anthocyanins (ACNs) from grape skin were investigated. The double emulsions exhibited the monomodal distribution (d = 686 ± 25 nm) showing relatively high encapsulation efficiency (87.74 ± 3.12%). After in vitro mouth digestion, the droplet size (d = 771 ± 26 nm) was significantly increased (p < 0.05). The double W1/O/W2 emulsions became a single W1/O emulsion due to proteolysis, which were coalesced together to form big particles with significant increases (p < 0.01) of average droplet sizes (d > 5 µm) after gastric digestion. During intestinal digestion, W1/O droplets were broken to give empty oil droplets and released ACNs in inner water phase, and the average droplet sizes (d < 260 nm) decreased significantly (p < 0.05). Our results indicated that ACNs were effectively protected by W/O/W double emulsions against in vitro mouth digestion and gastric, and were delivered in the simulated small intestine phase.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Sule O. Salawu ◽  
Oluwaseun M. Folorunso ◽  
Akintunde A. Akindahunsi ◽  
Aline A. Boligon

The present investigation was designed to characterize the phenolic profile of Lima beans (Phaseolus Lunatus) and also to evaluate the antioxidant indices: total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant power (FRAP), 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and amino acid composition at different stages of simulated gastrointestinal digestion (oral, gastric, intestinal). High Performance Liquid Chromatography (HPLC-DAD) analysis revealed the presence of some phenolic compounds (gallic acid, catechin, caffeic acid, rutin, quercitrin, quercetin, kaempferol and apigenin), with a reduced amount (mg/g) after cooking; gallic acid (raw: 1.96 ± 0.02; cooked: 1.82 ± 0.01); catechin (raw: 0.83 ± 0.01; cooked: 0.73 ± 0.01); rutin (raw: 2.61 ± 0.03; cooked:1.74 ±0.03); quercitrin (raw: 5.73 ± 0.01; cooked: 5.68 ± 0.01); apigenin (raw: 2.09 ±0.01; cooked:1.79 ± 0.02),  with exception of quercetin (raw: 2.11 ±0.02; cooked: 5.73 ±  0.02) and caffeic acid (raw: 2.08 ±0.04; cooked: 2.95 ± 0.04). The results of antioxidant indices of in vitro enzyme digested lima beans revealed higher values for cooked Lima beans compared to the raw counterpart, with a stepwise increase at the different stages of in vitro digestion, with the exception of ferric reducing antioxidant power; TPC (oral digestion: 65.44 ± 0.96; gastric digestion:134.87± 0.46; intestinal digestion:517.72 ± 4.70; mg/g tannic acid equivalent), TFC (oral digestion: 199.30 ± 6.43; gastric digestion: 1065.97 ± 1.22; intestinal digestion: 3691.87 ± 4.2; mg/g quercetin equivalent), DPPH (oral digestion: 85800.00 ± 305.50; gastric digestion: 99066.66 ± 115.47; intestinal digestion: 211354.20 ± 360.84 µmol TE/g sample). The results also revealed a progressive increase in the antioxidant indices and amino acid composition (mg/kg) for both raw and processed lima beans at various stages of the in vitro digestion, with the intestinal phase of simulated digestion ranking higher. This implied that the Lima beans contained some essential amino acids and antioxidant molecules that would be readily available after passing through the gastrointestinal tract and could therefore be explored as functional food in the management of free radical mediated diseases.


Foods ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 913
Author(s):  
Carol González ◽  
Daniela González ◽  
Rommy N. Zúñiga ◽  
Humberto Estay ◽  
Elizabeth Troncoso

This work deepens our understanding of starch digestion and the consequent absorption of hydrolytic products generated in the human small intestine. Gelatinized starch dispersions were digested with α-amylase in an in vitro intestinal digestion system (i-IDS) based on a dialysis membrane process. This study innovates with respect to the existing literature, because it considers the impact of simultaneous digestion and absorption processes occurring during the intestinal digestion of starchy foods and adopts phenomenological models that deal in a more realistic manner with the behavior found in the small intestine. Operating the i-IDS at different flow/dialysate flow ratios resulted in distinct generation and transfer curves of reducing sugars mass. This indicates that the operating conditions affected the mass transfer by diffusion and convection. However, the transfer process was also affected by membrane fouling, a dynamic phenomenon that occurred in the i-IDS. The experimental results were extrapolated to the human small intestine, where the times reached to transfer the hydrolytic products ranged between 30 and 64 min, according to the flow ratio used. We consider that the i-IDS is a versatile system that can be used for assessing and/or comparing digestion and absorption behaviors of different starch-based food matrices as found in the human small intestine, but the formation and interpretation of membrane fouling requires further studies for a better understanding at physiological level. In addition, further studies with the i-IDS are required if food matrices based on fat, proteins or more complex carbohydrates are of interest for testing. Moreover, a next improvement step of the i-IDS must include the simulation of some physiological events (e.g., electrolytes addition, enzyme activities, bile, dilution and pH) occurring in the human small intestine, in order to improve the comparison with in vivo data.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 500-500
Author(s):  
Yuyin Zhou ◽  
Chi Chen

Abstract Objectives This study investigated the occurrence of Strecker degradation during in vitro digestion. Methods Casein was first incubated with artificial gastric fluid containing porcine pepsin and HCl (pH = 2) for 60 min. After adjusting pH to 7 with sodium hydroxide, casein gastric digesta was then incubated with artificial intestinal fluid containing porcine pancreatin (pH = 7) for 120 min. Digesta samples were collected at 0, 10, 20, 30, and 60 min of gastric digestion, and then 10, 20, 30, 60, and 120 min of intestinal digestion. Free amino acids and aldehydes in digesta samples were analyzed by the liquid chromatography-mass spectrometry analysis. Results Multiple aldehydes were detected in gastric digestion samples, and their concentrations were further increased by intestinal digestion. Among them, isovaleraldehyde, isobutyraldehyde, phenylacetaldehyde, and acetaldehyde, are the Strecker degradation products of leucine, valine, phenylalanine, and alanine, respectively. Without digestive enzymes, casein incubation did not produce Strecker aldehydes. Conclusions In vitro digestion of proteins can produce Strecker aldehydes. Funding Sources This research was partially supported by the Agricultural Experiment Station project MIN-18-125 (C. C.) from the United States Department of Agriculture (USDA).


Sign in / Sign up

Export Citation Format

Share Document