scholarly journals PROXIMATE AND SHELF LIFE EVALUATION OF SOYMILK YOGHURT WITH ADDED SACCHAROMYCES BOULARDII

2021 ◽  
Vol 9 (08) ◽  
pp. 1099-1108
Author(s):  
Okafor S.O. ◽  
◽  
Anyalogbu E.A. ◽  

The effect of adding Saccharomyces boullardii in soya yoghurt was studied. The control was made with soya milk and traditional starter culture (Lactobacillus bulgaricus and Streptococcus thermophilus) while the other three treatments were made by adding 1%, 2%, 3% of S. boulardii with traditional yoghurt starter. Proximate composition of all yoghurt treatments were determined after fermentation time. Shelf-life evaluation of yoghurt treatment were observed during the storage time. During the proximate composition evaluation, treatment with 3% S. boulardii had highest moisture and protein content at 83.43±0.03 and 92±0.3 but least ash and carbohydrate content at 1.2±0.18 and 4.27±0.3. During shelf-life evaluation, titratable acidity and syneresis values of yoghurt with S. boulardii were slightly increased while pH and water holding capacity decreased compared with control yoghurt. After 21 days, S. boulardii counts were 5.89, 6.07 and 6.03 log.cfu/ml for yoghurt with 2% and 3% S. boulardii respectively whereas L. bulgaricus and S. thermophilius of yoghurt with 3% S. boulardii were 7.45 and 8.38 log.cfu/ml respectively. The addition of S. boulardii improved the survivability of the bacteria starter culture.

2017 ◽  
Vol 5 (3) ◽  
pp. 300-307 ◽  
Author(s):  
Alaa Niamah

The effect of adding Saccharomyces boulardii on yogurt quality was studied. Yogurt control was made using whole cow’s milk and classic starter culture. Other three treatments of yogurt were made by adding 1%,2% and 3% of Saccharomyces boulardii with yogurt starter. pH values and proteolytic activity of all yogurt treatments were determined during fermentation time. Changes in physicochemical and microbial properties of yogurt product were observed during storage time (21 days at 4°C). Yogurt samples with added yeast to starter cultures showed a slight increase in pH values during the 6 hours of fermentation. After fermentation time, pH and proteolytic activity of yogurt with 3% yeast were 4.05 and 250 μg/ml while control sample was 4.22 and 200 μg/ml respectively. pH, TN, WSN, TVFA and WHC values of yogurt with Saccharomyces boulardii were slightly increased whereas decreased the STS percentage compare with control yogurt without yeast during storage time. The addition of Saccharomyces boulardii improved the survivability of bacterial starter culture. After 21 day, Saccharomyces boulardii counts were 5.78, 6.01 and 6.31 Log. CFU/gm for yogurt with 1%,2% and 3% yeast respectively whereas Log. lactic acid bacteria of yogurt with 3% yeast was 7.53 and 7.55 for Lactobacillus bulgaricus and Streptococcus thermophilus.


2020 ◽  
Vol 3 (2) ◽  
pp. 118
Author(s):  
Thanh Le ◽  
Bogdan Goranov ◽  
Radka Vlaseva

In this paper ten symbiotic starter cultures for yogurt production were examined for their coagulation time, titratable acidity, pH at the moment of coagulation. Their maximum rate of acidification was also determined by model of fermentation kinetics. Three starter cultures were selected for production of Vietnamese yogurt. With the selected starter culture, yogurt from natural milk and reconstituted whole milk was obtained. Their coagulation time, acidity, maximum rate of acidification and rate of acidification during storage of product were studied. As a result of this study and mathematical modeling, we concluded that maximum rate of acidification at moment of coagulation and during storage was affected by the type of milk used in yogurt production.


Food Research ◽  
2020 ◽  
Vol 4 (5) ◽  
pp. 1753-1757
Author(s):  
Widayat ◽  
H. Satriadi ◽  
B. Cahyono ◽  
D. Girsang ◽  
N. Prabandari ◽  
...  

This study was aimed to determine the effect of red ginger extract concentration (0.2, 0.4, 0.6, 0.8, 1% v/v) and fermentation time on the quality and acidity of yogurt. Yogurt was made from fresh cow milk, Lactobacillus bulgaricus and 2% v/v Streptococcus thermophilus. Operation conditions included fermentation time of 60 hrs and data retrieval every 12 hrs. The results of this study had shown that pH of yogurt was decreasing, while titratable acidity increased during the fermentation time. The addition of red ginger extract did not give a significant effect on the protein content of yogurt. Yogurt with higher concentration of ginger extract increased the spicy aroma and flavor, however its color was similar to the commercial yogurt. At higher concentrations, red ginger displayed antimicrobial and antifungal characteristics, as shown by the decreasing microorganisms counts.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 573
Author(s):  
Carmen Masiá ◽  
Asger Geppel ◽  
Poul Erik Jensen ◽  
Patrizia Buldo

To overcome texture and flavor challenges in fermented plant-based product development, the potential of microorganisms is generating great interest in the food industry. This study examines the effect of Lactobacillus rhamnosus on physicochemical properties of fermented soy, oat, and coconut. L. rhamnosus was combined with different lactic acid bacteria strains and Bifidobacterium. Acidification, titratable acidity, and viability of L. rhamnosus and Bifidobacterium were evaluated. Oscillation and flow tests were performed to characterize rheological properties of fermented samples. Targeted and untargeted volatile organic compounds in fermented samples were assessed, and sensory evaluation with a trained panel was conducted. L. rhamnosus reduced fermentation time in soy, oat, and coconut. L. rhamnosus and Bifidobacterium grew in all fermented raw materials above 107 CFU/g. No significant effect on rheological behavior was observed when L. rhamnosus was present in fermented samples. Acetoin levels increased and acetaldehyde content decreased in the presence of L. rhamnosus in all three bases. Diacetyl levels increased in fermented oat and coconut samples when L. rhamnosus was combined with a starter culture containing Streptococcus thermophilus and with another starter culture containing S. thermophilus, L. bulgaricus and Bifidobacterium. In all fermented oat samples, L. rhamnosus significantly enhanced fermented flavor notes, such as sourness, lemon, and fruity taste, which in turn led to reduced perception of base-related attributes. In fermented coconut samples, gel firmness perception was significantly improved with L. rhamnosus. The findings suggest that L. rhamnosus can improve fermentation time and sensory perception of fermented plant-based products.


Author(s):  
C. U. Obiora ◽  
E. C. Igwe ◽  
E. C. Udeagha ◽  
S. N. Orjiakor ◽  
C. S. Anarado

This research was carried out to evaluate the appropriate levels of substitution of powdered cow milk with soy milk and cornstarch needed to produce yoghurt, evaluating its quality and potential for acceptance. Powdered cow milk was substituted with soymilk and cornstarch up to 30% to produce yogurt and market sample yogurt was used as control. Each composite blend milk samples was homogenized, pasteurized at 75°C for 5 min, cooled and inoculated with a mixed freeze-dried starter culture containing strains of Streptococcus thermophilus and Lactobacillus bulgaricus at 45°C, fermented for 6 h and cooled to 4˚C. The proximate, chemical, microbial, functional and sensory evaluation of the composite yogurt samples was determined. The yogurt samples were coded ACS-1 to ACS-13 where ACS-13 represent control. The result of the proximate analysis showed that moisture content ranged from 82.04 – 88.71%, protein ranged 2.05 – 6.48%,  fat ranged from 2.14 – 3.62%,  carbohydrate ranged from 4.30 – 9.91% and ash content ranged from 0.53 – 1.48%. The pH ranged from 3.73 – 4.82. For microbial evaluation, the total viable bacteria count ranged from 1.90x107 – 11.60x107, total coliform count ranged from 0.50x107 – 3.90x107. For chemical and functional evaluation, the total solids ranged from 11.28 – 16.96%, titratable acidity ranged from 0.30 – 1.80%, syneresis ranged from 0.00 – 28.33%, water absorption capacity ranged from 0.00 – 75.53% and apparent viscosity ranged from 1337- 4863 cP. For sensory evaluation, yogurt produced with 100% powdered milk (ACS-1) was the most preferred while yogurt sample produced with 50% powdered milk, 30% cornstarch and 20% soy milk (ACS-10) was the least preferred among other yogurt samples. This study revealed the mix ratios of powdered cow milk, soy milk and cornstarch that were acceptable in accordance with yogurt standard and the extent the quality of yogurt was generally accepted with the use of processing adjuncts (soymilk and cornstarch).


1988 ◽  
Vol 51 (5) ◽  
pp. 386-390 ◽  
Author(s):  
Y. A. EL-SAMRAGY ◽  
E. O. FAYED ◽  
A. A. ALY ◽  
A. E. A. HAGRASS

The traditional yogurt starter, i.e. Staphylococcus thermophilus and Lactobacillus bulgaricus, has always been used to bring about the lactic acid fermentation during manufacture of concentrated yogurt known in Egypt as “Labneh”. Different combinations of some strains of Enterococcus faecalis, isolated from Laban Rayeb (a type of fermented milk), in combination with a certain strain of Lactobacillus bulgaricus were used to produce a Labneh-like product. Chemical, microbiological and organoleptic properties of the Labneh-like product were assessed and compared to the characteristics of Labneh processed traditionally by two different dairy plants in Egypt. All treatments showed similar changes during storage at 5 ± 1°C for 28 d. Total solids, fat, titratable acidity and pH values coincided with those of Labneh. Some components increased until the seventh day, i.e. acetaldehyde and diacetyl, while other features, such as the ratio of soluble nitrogen/total nitrogen and tyrosine, increased until the fourteenth day of storage. Thereafter, no marked variations occurred. However, a decrease in tryptophan content of all products occurred during the storage period. Total viable count and count of lactic acid bacteria of Labneh-like product as well as Labneh increased until the end of the second week of storage and then decreased. Coliforms, yeasts and molds and psychrotrophic bacteria were detected in some fresh and stored samples. The starter culture which consisted of 1.5% Enterococcus faecalis 19 and 1.5% Enterococcus faecalis 22 was used successfully to manufacture a Labneh-like product with high acceptability when fresh or refrigerated at 5 ± 1°C.


2020 ◽  
Vol 8 (10) ◽  
pp. 1586 ◽  
Author(s):  
Nikola Popović ◽  
Emilija Brdarić ◽  
Jelena Đokić ◽  
Miroslav Dinić ◽  
Katarina Veljović ◽  
...  

Yogurt is a traditional fermented dairy product, prepared with starter cultures containing Streptococcus thermophilus and Lactobacillus bulgaricus that has gained widespread consumer acceptance as a healthy food. It is widely accepted that yogurt cultures have been recognized as probiotics, due to their beneficial effects on human health. In this study, we have characterized technological and health-promoting properties of autochthonous strains S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21 isolated from artisanal sour milk and yogurt, respectively, in order to be used as functional yogurt starter cultures. Both BGKMJ1-36 and BGVLJ1-21 strains have the ability to form curd after five hours at 42 °C, hydrolyze αs1-, β-, and κ- casein, and to show antimicrobial activity toward Listeria monocytogenes. The strain BGKMJ1-36 produces exopolysaccharides important for rheological properties of the yogurt. The colonies of BGKMJ1-36 and BGVLJ1-21 strains that successfully survived transit of the yogurt through simulated gastrointestinal tract conditions have been tested for adhesion to intestinal epithelial Caco-2 cells. The results reveal that both strains adhere to Caco-2 cells and significantly upregulate the expression of autophagy-, tight junction proteins-, and anti-microbial peptides-related genes. Hence, both strains may be interesting for use as a novel functional starter culture for production of added-value yogurt with health-promoting properties.


1980 ◽  
Vol 60 (4) ◽  
pp. 885-897 ◽  
Author(s):  
L. A. DREVJANY ◽  
O. R. IRVINE ◽  
G. S. HOOPER

Colostrum inoculated with Streptococcus lactis (treatment A), mixture of Streptococcus thermophilus and Lactobacillus bulgaricus (treatment B), Lactobacillus acidophilus (treatment C), naturally fermented (treatment D) and kept fresh (treatment E) was used in laboratory storage trial and without treatment E in calf feeding trial. Both trials were aimed at better control of the fermentation process of colostrum and improving its acceptability and nutritive value as the main feed for calves up to weaning. The fermentation, as indicated by pH and titratable acidity changes, was most effectively controlled by an early inoculation with S. lactis, although it had no effect on mold and yeast contamination. The use of this culture produced better (P < 0.05) overall daily gains (582.0 and 434.0 g for treatments A and D, respectively), higher (P < 0.05) daily consumption of starter feed (1131 and 893 g for treatments A and D, respectively) and lowest incidence of watery diarrhea in the calf feeding trial. In the laboratory storage trial, it resulted in highest (P < 0.05) levels of residual lactose in the fermented product (3.41, 1.61, 1.63 and 3.15% for treatments A, B, C and D, respectively). Early development of high acidity (below pH 4) in colostrum treated by a mixed culture of L. bulgaricus and S. thermophilus or by L. acidophilus led to premature termination of both trial treatments due to total refusal of colostrum by calves. However, both products were free of mold and yeast contamination for the duration of 25-day storage. To assure high palatability of colostrum and minimize acid sensitive contamination, it appears that fermentation should quickly lower and then maintain the pH within 4–4.5.


2020 ◽  
Vol 7 ◽  
pp. 17-23 ◽  
Author(s):  
Ayowole Victor Atere ◽  
Victor O. Oyetayo ◽  
Felix A. Akinyosoye

Fermented food condiments form an integral part of African diets as they supply nutrients with claimed medicinal properties. This research was designed to investigate the effect of period of fermentation on the microbial, mineral and proximate composition of fermented Parkia biglobosa seeds. The bacteriological, nutritional and sensory parameters were carried out on the raw, dehulled and fermented seeds. The result of the total bacterial counts showed that the raw seed had 3.67 log10cfu, there was a significant increase in the total bacteria count from 2.20 log10cfu/g in dehulled unfermented bean to 9.248 log10cfu/g at 96 hr of fermentation. The bacteria isolated were Bacillus subtilis (32 isolates), Lactobacillus plantarum (9 isolates), and Leuconostoc spp (3 isolates). The pH increased significantly from 4.57 in the raw seeds to 8.40 at 96 hr of fermentation. The titratable acidity decreased from 0.179N in the raw seeds until it got to 0.0313N at 96hr of fermentation. The proximate composition on dry mass basis showed that ‘iru’ fermented for 48hr had the highest protein content of 41.023%. The carbohydrate decreased from 42.153% in the raw seed to 20.733% at the end of fermentation. Four of the minerals; lead, cadmium, cobalt and nickel were detected in the raw seeds but were no longer available after dehulling. Phosphorus, sodium, calcium and potassium increased during the fermentation period. The sensory result showed that the intensity of growth on the surface of the fermenting bean increased. Moreover, the sensory score on the texture showed that the seed became softer as the fermentation progressed. The colour became darker and the ammonia odour became more pungent. The overall-liking showed a significant increase as the fermentation progressed where the panelist preferred the product fermented for 72hr. The result from this study revealed that the best time for fermentation of Parkia biglobosa seeds to produce good quality iru was between 48hr and 72hr.


2015 ◽  
Vol 35 (04) ◽  
pp. 449 ◽  
Author(s):  
Tyas Utami ◽  
Rifa Nurhayati ◽  
Endang Sutriswati Rahayu

The aim of this study was to investigate the population of selected bacteria and some chemical characteristics during sorghum fermentation with the addition of Lactobacillus plantarum S4512. Proteolytic L. plantarum S4512 isolated from natural sorghum fermentation was added into sorghum fermentation. Sorghum flour was mixed with sterile water(1:2 w/v) and then was inoculated with 1% v/v (about 109 CFU/ml) culture of L. plantarum S4512. Fermentation was carried out at 37°C for 24 hours. As a control, natural sorghum fermentation without addition of a starter culture was carried out at 30°C for 24 hours. During fermentation time, the amount of bacteria, acid producing bacteria, coliform and proteolytic bacteria were monitored. The titratable acidity, pH, soluble protein, and proteolytic activity were also measured. Addition of L. plantarum S4512 increased significantly the initial population of total bacteria, lactic acidbacteria and proteolytic bacteria to 107 CFU/ml and suppressed the growth of coliforms indicated by siginificantly decline of coliforms population after 6 h fermentation. The production of acid was doubled of that in the naturalfermentation resulted in the lower pH to 3.14. Both natural sorghum fermentation and that with addition of proteolytic L. plantarum S4512 showed some proteolytic activities during fermentation.Keywords: Lactic acid bacteria, sorghum fermentation, proteolytic activity


Sign in / Sign up

Export Citation Format

Share Document