scholarly journals Low-Field NMR Analysis of Chicken Patties Prepared with Woody Breast Meat and Implications to Meat Quality

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2499
Author(s):  
Xiao Sun ◽  
Jinjie You ◽  
Yan Dong ◽  
Ligen Xu ◽  
Clay J. Maynard ◽  
...  

The scope of this paper was to investigate the effects of water distribution differences on the quality and feasibility of chicken patties supplemented with woody breast (WB). Chicken patties, containing differing amounts of WB (0%, 25%, 50%, 75%, 100%) were analyzed using low-field NMR. Quality differences between chicken patties were further evaluated by combining lipid and protein properties, fry loss (FL), color (L*, a*, b*), texture (hardness, springiness, chewiness, cohesiveness, resilience), microstructure, and sensory characteristics. The results expressed that both lipid and protein oxidation increased and immobilized water in chicken patties can be converted to free water more easily with increasing levels of WB. Additionally, the free water ratio decreased, water freedom increased, and the bound water ratio increased (p < 0.05). Fry loss, color, texture (hardness, springiness, chewiness), microstructure, and sensory (character, organization, taste) characteristics deteriorated significantly when the WB inclusion level exceeded 25%. Particularly, characteristics of texture (chewiness and character) and sensory (character and organization) decreased significantly as WB inclusion increased past 25% (p < 0.01). Furthermore, fry loss, texture, and overall microstructure partially confirmed the moisture variation of chicken patties as the potential cause of the abnormal quality. Although the experimental data expressed that mixing to 35% WB inclusion was feasible, the practical and economic impact recommends inclusion levels to not exceed 30%.

2012 ◽  
Vol 550-553 ◽  
pp. 3406-3410 ◽  
Author(s):  
Xin Li ◽  
Li Zhen Ma ◽  
Yuan Tao ◽  
Bao Hua Kong ◽  
Pei Jun Li

Low field-nuclear magnetic resonance (LF-NMR) was employed in this study to evaluate water mobility and distribution in beef granules during drying process due to its fast and nondestructive detection. Beef granules were dried in a blast drying oven at different temperatures (40, 50 and 60 °C) to a final moisture content around 21% after cooking. Results showed that it took about 150, 90 and 60 min for the samples dried at 40, 50 and 60 °C to get to the drying destination, respectively. The immobilized water was transformed into bound water with lower association degree and free water during drying at different conditions. Drying also resulted in a proportion increase of bound water; what’s more, the proportion of bound water is the largest when drying at 50 °C compared to 40 and 60 °C. After the drying destination was reached, the transverse relaxation time for bound water and immobilized water appeared significant change. It revealed that LF-NMR was an effective tool to assess water mobility and distribution during food drying process.


Author(s):  
Qingwen Ni ◽  
Huijie Leng ◽  
Daniel P. Nicolella

Bone quality in terms of water distribution, porosity, and pore size distributions in cortical bone and relate these measures can be used to correlate bone mechanical properties. The objective of this paper is to demonstrate that non-destructive low-field NMR technique can be used to determine the mobile and the bound water distribution, and further determine the loosely and the tightly bound water in cortical bone in vitro.


2021 ◽  
Vol 13 (11) ◽  
pp. 6010
Author(s):  
Asad Nawaz ◽  
Ibrahim Khalifa ◽  
Noman Walayat ◽  
Jose M. Lorenzo ◽  
Sana Irshad ◽  
...  

Global fisheries production has increased up to ~200 MT, which has resulted in the intensive generation of waste or byproducts (~20 MT), which is creating serious problems for environmental management with zero income. This study proposes an idea of using whole fish (red and white meat, skin, bones, and fins but not scales) for human food (snack food) with the aim of zero waste generation. Whole fish powder (WFP) was prepared by a novel method (using freeze-drying as well as stone ball milling) and fortified in baked snacks at four levels (0, 5, 10, and 15% w/w of 100 g of formulation). The results revealed that the addition of WFP decreased expansion and color parameters compared to control. Hardness was significantly (p < 0.05) increased with the addition of WFP, which was attributed to the mineral content of WFP. Pasting properties determined by rapid visco analyzer (RVA) were dramatically decreased with the addition of 10–15% WFP, suggesting the weak interaction of starch and protein, which was also evidenced by scanning electron microscopy (SEM). Low field nuclear magnetic resonance (LF-NMR) analysis revealed that the amount of free water was increased when 10–15% WFP was added in snacks while bound water was highest in control and 5% WFP samples, respectively. The microstructural analysis by SEM showed that the protein network was increased in those samples incorporated with WFP compared to control that had more starch granules. The results suggest the feasibility of adding 5% WFP for proper structure, texture, pasting properties, and water distribution in order to reduce fish waste.


Solid Earth ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. 537-555 ◽  
Author(s):  
M. E. T. Quinquis ◽  
S. J. H. Buiter

Abstract. Subduction of oceanic lithosphere brings water into the Earth's upper mantle. Previous numerical studies have shown how slab dehydration and mantle hydration can impact the dynamics of a subduction system by allowing a more vigorous mantle flow and promoting localisation of deformation in the lithosphere and mantle. The depths at which dehydration reactions occur in the hydrated portions of the slab are well constrained in these models by thermodynamic calculations. However, computational models use different numerical schemes to simulate the migration of free water. We aim to show the influence of the numerical scheme of free water migration on the dynamics of the upper mantle and more specifically the mantle wedge. We investigate the following three simple migration schemes with a finite-element model: (1) element-wise vertical migration of free water, occurring independent of the flow of the solid phase; (2) an imposed vertical free water velocity; and (3) a Darcy velocity, where the free water velocity is a function of the pressure gradient caused by the difference in density between water and the surrounding rocks. In addition, the flow of the solid material field also moves the free water in the imposed vertical velocity and Darcy schemes. We first test the influence of the water migration scheme using a simple model that simulates the sinking of a cold, hydrated cylinder into a dry, warm mantle. We find that the free water migration scheme has only a limited impact on the water distribution after 1 Myr in these models. We next investigate slab dehydration and mantle hydration with a thermomechanical subduction model that includes brittle behaviour and viscous water-dependent creep flow laws. Our models demonstrate that the bound water distribution is not greatly influenced by the water migration scheme whereas the free water distribution is. We find that a bound water-dependent creep flow law results in a broader area of hydration in the mantle wedge, which feeds back to the dynamics of the system by the associated weakening. This finding underlines the importance of using dynamic time evolution models to investigate the effects of (de)hydration. We also show that hydrated material can be transported down to the base of the upper mantle at 670 km. Although (de)hydration processes influence subduction dynamics, we find that the exact numerical implementation of free water migration is not important in the basic schemes we investigated. A simple implementation of water migration could be sufficient for a first-order impression of the effects of water for studies that focus on large-scale features of subduction dynamics.


2015 ◽  
Vol 188 ◽  
pp. 664-672 ◽  
Author(s):  
María Gudjónsdóttir ◽  
Amidou Traoré ◽  
Ásbjörn Jónsson ◽  
Magnea Gudrún Karlsdóttir ◽  
Sigurjón Arason

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3395
Author(s):  
Feiyan Mao ◽  
Yingjie Zhao ◽  
Yiping Zhang ◽  
Zhou Chen ◽  
Lu Yin

The dewatering of dredged sludge is a critical step in the minimization and reutilization of this solid waste. However, there is a lack of available literature on the fundamental drying characteristics of dredged sludge. In this work, two kinds of typical sludge dredged from an urban watercourse were tested by low-field NMR to investigate the water distribution in sludge and it was found that water contained in sludge can be classified into three categories: free water, capillary water and bound water. In addition, a novel model was proposed based on the Lennard-Jones equation and Kelvin law to quantitatively evaluate the binding energy during drying. Further, the model results were experimentally verified by thermogravimetry differential thermal analysis (TG-DTA). Results show that the trends of the model are consistent with the experimental values and the gradient of energy consumption during dehydration can be divided into three main stages. In stage 1, the total energy required for dewatering equals the latent heat of free water. In stage 2, binding energy reaches dozens to hundreds of kJ/kg accounting for capillary action. In stage 3, binding energy increases steeply reaching almost thousands of kJ/kg due to intermolecular interactions. All the discovered aspects could improve the management and disposal of dredged sludge from an energy cost perspective.


Author(s):  
Lin Fang ◽  
Ai-qing Ren ◽  
N. Bolgova ◽  
M. Samilyk ◽  
V. Sokolenko

Quick and accurate determination of oil content is extremely important to control the oil content of vacuum fried fruit and vegetable chips. This article uses fresh Pleurotus eryngii as raw materials to explore the influence of different vacuum frying times (0–14 min) on the moisture distribution, oil changes and quality of Pleurotus eryngii strips. The results show that as the frying time increases, the lateral relaxation time required for the taro strips to drop from the highest point of the signal amplitude to smooth becomes shorter and shorter, and the decay rate becomes faster and faster, that is, when the frying time is 14 minutes, The attenuation curvature and velocity are the largest. The oil content and brittleness of Pleurotus eryngii strips are significantly increased (P < 0.05); the water content is significantly reduced (P < 0.05); the hardness first decreases and then increases (P < 0.05); the brightness L* value does not change much, and the color is not Significant change (P > 0.05). At the same time, low-field NMR shows that the high-degree-of-freedom water in the pleurotus eryngii strips migrates to the low-degree-of-freedom water during the vacuum frying process. Among them, the free water in the pleurotus eryngii strips has a large degree of freedom. It has been removed, resulting in poor mobility and increased inability to flow. Part of the free water migrates to the semi-bound water, and most of the semi-bound water migrates outward as free water and then is removed. From this, all peaks are gradually removed. Moving to the left, the total peak area decreases. During the frying process, the T2 relaxation time of Pleurotus eryngii strips all shifted to the left, the total peak area is continuously reduced, the water content is getting less and less, the fat content is getting higher and higher, and the fat content distributed in the edge shell is always higher than Other locations. Low-field nuclear magnetic resonance technology can provide a fast, accurate, and non-destructive method for detecting moisture and grease for the vacuum-fried fruit and vegetable chips. As the frying time increases, the inner contour of the MRI image of Pleurotus eryngii strips gradually becomes blurred, the brightness gradually decreases, the volume shrinks, the less water, and the image interior is close to the background color (blue), indicating that the sample has reached the end of drying; and The grease content is distributed in the edge shell layer higher than other positions. Therefore, the water is continuously removed, the oil signal becomes stronger and stronger, and the oil content of the sample becomes higher and higher.


1993 ◽  
Vol 69 (3) ◽  
pp. 913-920 ◽  
Author(s):  
Elizabeth F. Armstrong ◽  
Martin A. Eastwood ◽  
W. Gordon Brydon

Wheat bran and pectin (100 g/kg) were added to a basal diet and fed to rats. An in vitro dialysis technique was used to measure the distribution of caecal and faecal water between the bound, i.e. that held by bacteria and undigested macromolecules, and free water. Bran increased wet (67%) and dry (74%) faecal weight. Pectin increased wet faecal weight (59 %), but did not influence dry weight. In faeces both bran and pectin increased the amount of total and bound water, but only pectin increased total and bound water when expressed on a dry weight basis. Caecal wet (90%) and dry (67%) weights increased with pectin but not with bran. Bran did not change total water but increased bound water whereas pectin increased both. This suggests that water contributed more to the increase in stool bulk in the pectin- supplemented animals due to free and bound water associated with both increased numbers of bacteria and residual pectin. Pectin altered the distribution of water in faeces. Bran has no effect on water distribution and is only partly fermented. The residual water-holding capacity leads to an increased wet and dry stool output.


Sign in / Sign up

Export Citation Format

Share Document