scholarly journals Structural Characterization and Antioxidant Activity of Exopolysaccharide from Soybean Whey Fermented by Lacticaseibacillus plantarum 70810

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2780
Author(s):  
Juanjuan Tian ◽  
Qingyan Mao ◽  
Mingsheng Dong ◽  
Xiaomeng Wang ◽  
Xin Rui ◽  
...  

Soybean whey is a high-yield but low-utilization agricultural by-product in China. In this study, soybean whey was used as a substrate of fermentation by Lacticaseibacillus plantarum 70810 strains. An exopolysaccharide (LPEPS-1) was isolated from soybean whey fermentation by L. plantarum 70810 and purified by ion-exchange chromatography. Its preliminary structural characteristics and antioxidant activity were investigated. Results show that LPEPS-1 was composed of mannose, glucose, and galactose with molar ratios of 1.49:1.67:1.00. The chemical structure of LPEPS-1 consisted of →4)-α-D-Glcp-(1→, →3)-α-D-Galp-(1→ and →2)-α-D-Manp-(1→. Scanning electron microscopy (SEM) revealed that LPEPS-1 had a relatively rough surface. In addition, LPPES-1 exhibited strong scavenging activity against DPPH and superoxide radicals and chelating ability on ferrous ion. This study demonstrated that soybean whey was a feasible fermentation substrate for the production of polysaccharide from L. plantarum 70810 and that the polysaccharide could be used as a promising ingredient for health-beneficial functional foods.

2021 ◽  
Vol 58 (6A) ◽  
pp. 199
Author(s):  
Pham Duc Thinh

Sea cucumber glycosaminoglycans have been well known as potential anticoagulant and antithrombin agents. In this investigation, glycosaminoglycans were isolated from sea cucumber Stichopus horrens by papain enzymatic digestion. Crude glycosaminoglycans were fractionated and purified by using anion-exchange chromatography on the DEAE-Macro Prep column to give two fractions of fucosylated chondroitin sulfate (FCS1) and fucan sulfate (FS2). Structural characteristics of F1 and F2 fractions were elucidated using chemical and IR, NMR spectroscopic methods. The results showed that the monosaccharide compositions of FCS1 consist of N-Acetyl-Galactosamine (GlcNAc), D-Glucuronic acid (GlcA) and Fucose (Fuc) residues with different molar ratios, while FS2 content only fucose residues. Sulfate contents of FCS1 and FS2 were 47.4% and 48.1%, respectively. FCS1 and FS2 fractions were different in the pattern of sulfation of  N-Acetyl-Galactosamine and fucose residues. IR and NMR spectra of two frations showed that sulfate groups were primarily occupied at C4 of pyranose residues in FS2 and C6, C2 and/or C3 of pyranose residues in FCS1 fraction. Our results contributed to knowledge on structural types of glycosaminoglycan from sea cucumbers in Vietnam. The establishment of structural features plays an important role in further studies of the structure-bioactivity relationship of sea cucumber glycosaminoglycan.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3267
Author(s):  
Wen Jiang ◽  
Reza Hosseinpourpia ◽  
Vladimirs Biziks ◽  
Sheikh Ali Ahmed ◽  
Holger Militz ◽  
...  

Polyurethane (PU) adhesives were prepared with bio-polyols obtained via acid-catalyzed polyhydric alcohol liquefaction of wood sawdust and polymeric diphenylmethane diisocyanate (pMDI). Two polyols, i.e., crude and purified liquefied wood (CLW and PLW), were obtained from the liquefaction process with a high yield of 99.7%. PU adhesives, namely CLWPU and PLWPU, were then prepared by reaction of CLW or PLW with pMDI at various isocyanate to hydroxyl group (NCO:OH) molar ratios of 0.5:1, 1:1, 1.5:1, and 2:1. The chemical structure and thermal behavior of the bio-polyols and the cured PU adhesives were analyzed by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Performance of the adhesives was evaluated by single-lap joint shear tests according to EN 302-1:2003, and by adhesive penetration. The highest shear strength was found at the NCO:OH molar ratio of 1.5:1 as 4.82 ± 1.01 N/mm2 and 4.80 ± 0.49 N/mm2 for CLWPU and PLWPU, respectively. The chemical structure and thermal properties of the cured CLWPLW and PLWPU adhesives were considerably influenced by the NCO:OH molar ratio.


2020 ◽  
Vol 7 (2) ◽  
pp. 121-133
Author(s):  
Ayesha Akhtar ◽  
Shivakumar Arumugam ◽  
Shoaib Alam

Background:: Protein A affinity chromatography is often employed as the most crucial purification step for monoclonal antibodies to achieve high yield with purity and throughput requirements. Introduction:: Protein A, also known as Staphylococcal protein A (SPA) is found in the cell wall of the bacteria staphylococcus aureus. It is one of the first discovered immunoglobulin binding molecules and has been extensively studied since the past few decades. The efficiency of Protein A affinity chromatography to purify a recombinant monoclonal antibody in a cell culture sample has been evaluated, which removes 99.0% of feed stream impurities. Materials and Method:: We have systematically evaluated the purification performance by using a battery of analytical methods SDS-PAGE (non-reduced and reduced sample), Cation Exchange Chromatography (CEX), Size-exclusion chromatography (SEC), and Reversed phased-Reduced Chromatography for a CHO-derived monoclonal antibody. Results and Discussion:: The analytical test was conducted to determine the impurity parameter, Host Cell Contaminating Proteins (HCP). It was evaluated to be 0.015ng/ml after the purification step; while initially, it was found to be 24.431ng/ml. Conclusion:: The tests showed a distinct decrease in the level of different impurities after the chromatography step. It can be concluded that Protein A chromatography is an efficient step in the purification of monoclonal antibodies.


Planta Medica ◽  
2021 ◽  
Author(s):  
Vincent Brieudes ◽  
Eleni V. Mikropoulou ◽  
Errikos Kallergis ◽  
Andriana C. Kaliora ◽  
Efstathia Papada ◽  
...  

AbstractChios mastic gum is the resinous secretion obtained from the barks of the shrub Pistacia lentiscus var. Chia, which is endemic to the Greek island of Chios. Since antiquity, Chios mastic gum has found several uses as a phytotherapeutic remedy, primarily for the treatment of gastrointestinal disorders while recently, Chios mastic gum was also recognized by EMA as an herbal medicinal product with specific indications. Chios mastic gumʼs biological properties are attributed to triterpenes which comprise the major chemical group (approx. 70%) and notably isomasticadienonic acid and masticadienonic acid. However, due to their structural characteristics, the isolation thereof in high yield and purity is challenging and since they are not commercially available, pharmacological studies aiming to assess their biological properties are limited. In the present work, masticʼs phytochemical investigation by UPLC-HRMS is followed by the isolation and characterization of isomasticadienonic acid and masticadienonic acid to be used as analytical standards for their accurate and reliable quantification in human plasma. A UHPLC-tQ-MS method that was developed and validated (in terms of specificity, linearity, limit of quantification, accuracy and precision), for the direct quantification of the targeted compounds in the low ng/mL range of concentration, was subsequently implemented on plasma samples of healthy volunteers thus demonstrating its fitness for purpose. The results presented herein might provide insight to the understanding of this traditional natural product consumed notably for its anti-inflammatory, antioxidant and lipid lowering properties. Moreover, this method might serve as a starting point for any study aiming to monitor bioactive triterpenes in biological fluids.


2007 ◽  
Vol 544-545 ◽  
pp. 901-904 ◽  
Author(s):  
Ji Bum Yang ◽  
Tae Gyung Ko ◽  
Sang Jin Jung ◽  
Jae Hee Oh

We report on a process in which CuO nanopowder was produced in a high yield by adopting ultrasonic in aqueous solution. In our experiment, CuCl2 solution was reacted with NaOH solution and NaNO2, at ambient conditions applying ultrasonic for 5 min. Precipitation was performed by varying the molar ratios of NaOH/CuCl2 and NaNO2/CuCl2. CuO nanoparticles of ~ 5 nm and spherical shape were obtained at the NaOH/CuCl2 of 2.0 and the NaNO2/CuCl2 of 0.097. Without ultrasonication, an amorphous phase was formed at these conditions. This indicates that sonochemical reaction facilitates direct formation of the nanosized CuO particles. In addition, the particle morphology varied from sphere through ellipsoid to needle forms depending on pH. In thick films prepared with the CuO powder for gas sensing, the maximum CO gas sensitivity reached 93 % at the temperature of 250 °C and depended linearly on CO concentration in log scale over the range of 10 ~ 104 ppm.


1982 ◽  
Vol 152 (2) ◽  
pp. 888-892
Author(s):  
S Rottem ◽  
R M Cole ◽  
W H Habig ◽  
M F Barile ◽  
M C Hardegree

Tetanolysin binding to lipid vesicles was found to depend on the molar ratio of cholesterol to phospholipid, being low in vesicles containing up to 20 mol% cholesterol and high in vesicles containing more than 33 mol%. High concentrations of purified tetanolysin preparations formed arc- and ring-shaped structures. The structures were not readily detectable in diluted preparations unless incubated with lipid vesicles containing high molar ratios of cholesterol to phospholipid. It is suggested that the toxin is concentrated on the vesicles to local concentrations high enough to form the arcs and rings.


Author(s):  
Inês Guarda ◽  
Inês Fonseca ◽  
Hugo Pereira ◽  
Luisa Louro Martins ◽  
Romina Gomes ◽  
...  

2017 ◽  
Vol 6 (2) ◽  
pp. 1 ◽  
Author(s):  
Aynur Gunenc ◽  
Christina Alswiti ◽  
Farah Hosseinian

The potential of wheat bran (WB) addition as a prebiotic source were demonstrated using yogurt with probiotics (Lactobacillus acidophilus and Bifidobacterium lactis). Yogurts (with 4% WB) were significantly (P < 0.05) different in total bacterial counts (9.1 log CFU/mL), and total titratable acidity % (TTA, 1.4%) compared to controls during 28 days cold storage (4°C). Additionally, WB-total dietary fiber contents and their bound phenolic profiles were investigated as well as the antioxidant activity of WB-water extractable polysaccharides (WEP) was studied. HPLC analysis of alkaline hydrolyzed DF fractions showed that insoluble DF had higher phenolic acids (84.2%) content than soluble DF (15.8%). Also, crude-WEP showed stronger antioxidant activity compared to purified-WEP with an ORAC of 71.88 and 52.48 µmol TE/g, respectively. Here we demonstrate WB has potentials as a source of prebiotics, which may have the potentials for functional foods and nutraceutical applications.


Sign in / Sign up

Export Citation Format

Share Document